<返回更多

手写最简单的LRU算法

2020-11-09    
加入收藏

1 什么是LRU

LRU(Least recently used)最近最少使用,它的核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。因此 LRU 算法会根据数据的历史访问记录来进行排序,如果空间不足,就会淘汰掉最近最少使用的数据。

2 LRU 实现原理

由于 LRU 算法会将最近使用的数据优先级上升,因此需要数据结构支持排序,链表非常合适。

为什么不考虑数组呢?

由于 LRU 算法,一般都会应用在访问比较频繁的场景,因此,对数据的移动会频繁,而数组一旦移动,需要将移动到值的位置后面的所有数据的位置全部改变,效率比较低,不推荐使用。

3 双向链表之LinkedHashMap

前面我们分析到 LRU 的算法实现,可以使用链表实现,JAVA 中 LinkedHashMap 就是一个双向链表。

LinkedHashMap是HashMap的子类,在HashMap数据结构的基础上,还维护着一个双向链表链接所有entry,这个链表定义了迭代顺序,通常是数据插入的顺序。

我们来看看LinkedHashMap的源码:

手写最简单的LRU算法

 

从源码中的定义可以看到,accessOrder 属性可以指定遍历 LinkedHashMap 的顺序,true 表示按照访问顺序,false 表示按照插入顺序,默认为 false。

由于LRU对访问顺序敏感,因此使用true来简单验证一下:

public class LRUTest {
    public static void main(String[] args) {

        LinkedHashMap<String, Object> map = new LinkedHashMap<>(16, 0.75f, true);
        map.put("a", 1);
        map.put("b", 2);
        map.put("c", 3);
        System.out.println("before get " + map);
        map.get("a");
        System.out.println("after get" + map);
    }
}

运行结果如下:

before get {a=1, b=2, c=3}
after get{b=2, c=3, a=1}

可以看到通过 accessOrder = true,可以让 LinkedHashMap 按照访问顺序进行排序。

那么 LinkedHashMap 是怎么做的呢?

我们看下get方法

public V get(Object key) {
    Node<K,V> e;
    // 获取node
    if ((e = getNode(hash(key), key)) == null)
        return null;
    // 如果 accessOrder = true,则执行afterNodeAccess方法
    if (accessOrder)
        afterNodeAccess(e);
    return e.value;
}

再看下afterNodeAccess方法,发现进行移动节点,到此移动节点的原理我们了解了

 void afterNodeAccess(Node<K,V> e) { // move node to last
    LinkedHashMap.Entry<K,V> last;
    if (accessOrder && (last = tail) != e) {
        LinkedHashMap.Entry<K,V> p =
            (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        p.after = null;
        if (b == null)
            head = a;
        else
            b.after = a;
        if (a != null)
            a.before = b;
        else
            last = b;
        if (last == null)
            head = p;
        else {
            p.before = last;
            last.after = p;
        }
        tail = p;
        ++modCount;
    }
}

目前,如果使用 LinkedHashMap 做LRU,还有一个问题困扰着我们,就是如果容量有限,该如何淘汰旧数据?

我们回过头看看 put 方法

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mApping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

void afterNodeInsertion(boolean evict) { // possibly remove eldest
    LinkedHashMap.Entry<K,V> first;
    if (evict && (first = head) != null && removeEldestEntry(first)) {
        K key = first.key;
        removeNode(hash(key), key, null, false, true);
    }
}

从put方法中逐步看下来,最终我们发现,如果 removeEldestEntry(first) 方法返回true,则会移除 head,这样就淘汰了最近都没使用的数据。完全符合LRU。

4 最简单的LRU实现

根据上面分析,我们可以如下实现一个最简单的LRU

public class LRUCache<K,V> extends LinkedHashMap<K,V> {
    
  private int cacheSize;
  
  public LRUCache(int cacheSize) {
      // 注意:此处需要让 accessOrder = true
      super(cacheSize, 0.75f, true);
      this.cacheSize = cacheSize;
  }

  /**
   * 判断元素个数是否超过缓存的容量,超过需要移除
   */
  @Override
  protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
      return size() > cacheSize;
  }
}
声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>