<返回更多

8种ETL调度算法归纳总结,看完这些你就全明白了

2020-09-27    
加入收藏

摘要:ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中。目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。

 

ETL算法概览

8种ETL调度算法归纳总结,看完这些你就全明白了

 

> 算法应用场景概览

8种ETL调度算法归纳总结,看完这些你就全明白了

 

以上共计累积了8种ETL算法,其中主要分成4大类,增量类加、拉链算法是更符合数据仓库历史数据追踪的算法,但现实中基于业务及性能考虑,往往存在全删全插、增量类全算法的数据表应用。

全删全插模型

即Delete/Insert实现逻辑;

> 应用场景

主要应用在维表、参数表、主档表加载上,即适合源表是全量数据表,该数据表业务逻辑只需保存当前最新全量数据,不需跟踪过往历史信息。

算法实现逻辑

1.清空目标表;

2.源表全量插入;

> ETL代码原型.

--   1. 清理目标表
TRUNCATE TABLE <目标表>;
 --   2. 全量插入INSERT INTO <目标表>   (字段***)
SELECT 字段***FROM <源表>
***JOIN <关联数据>
WHERE   ***;

增量类全模型

即Upsert实现逻辑;

> 应用场景

主要应用在参数表、主档表加载上,即源表可以是增量或全量数据表,目标表始终最新最全记录。

> 算法实现逻辑

  1. 利用PK主键比对;
  2. 目标表和源表PK一致的变化记录,更新目标表;
  3. 源表存在但目标表不存在,直接插入;

ETL代码原型

-- 1. 生成加工源表
Create temp Table <临时表> ***;
INSERT INTO <临时表> (字段***)
SELECT 字段***  
FROM <源表>
***JOIN <关联数据>
WHERE ***
;
 
-- 2. 可利用Merge Into实现累全能力,当前也可以采用分步Delete/Insert或Update/Insert操作
Merge INTO <目标表> As T1 (字段***)
Using <临时表> as S1
on (***PK***)
when Matched then
update set Colx = S1.Colx ***
when Not Matched then
INSERT (字段***)   values (字段*** )
;

增量累加模型

Append实现逻辑;

应用场景

主要应用在流水表加载上,即每日产生的流水、事件数据,追加到目标表中保留全历史数据。流水表、快照表、统计分析表等均是通过该逻辑实现。


算法实现逻辑

1.源表直接插入目标表;


ETL代码原型

--   1.插入目标表
INSERT INTO <目标表>   (字段***)
SELECT 字段***FROM <源表>
***JOIN <关联数据>
WHERE   ***;

全立式拉链模型

> 拉链表背景知识

 概念

拉链表是一张至少存在PK字段、跟踪变化的字段、开链日期、闭链日期组成的数据仓库ETL数据表;

 益处

根据开链、闭链日期可以快速提取对应日期有效数据;

对于跟踪源系统非事件流水类表数据,拉链算法发挥越大作用,源业务系统通常每日变化数据有限,通过拉链加工可以大大降低每日打快照带来的空间开销,且不损失数据变化历史;

 示例,提取指定日期有效数据

8种ETL调度算法归纳总结,看完这些你就全明白了

 

提取2020年2月5日当日有效数据

Select *
From <目标表>
Where 开始日期<=date'2020-02-05'
And   结束日期 >date'2020-02-05';

最终提取到数据:

8种ETL调度算法归纳总结,看完这些你就全明白了

 

> 应用场景

全历史拉链,跟踪源表全量变化历史,若源表记录不存在,则说明数据闭链;根据PK新拉一条有效记录。

> 算法实现逻辑

1.提取当前有效记录;

2.提取当日源系统最新数据;

3.根据PK字段比对当前有效记录与最新源表,更新目标表当前有效记录,进行闭链操作;

4.根据全字段比对最新源表与当前有效记录,插入目标表;

ETL代码原型

——1. 提取当前有效记录
Insert into <临时表-开链-pre> (不含开闭链字段***)
Select 不含开闭链字段***From <目标表>
Where 结束日期 =date'<最大日期>';
;-- 2. 提取当日源系统最新数据<源表临时表-cur>
-- 3 今天全部开链的数据,即包含今天全新插入、数据发生变化的记录Insert Into <临时表-增量-ins>
Select 不含开闭链字段***From <源表临时表-cur>
where (不含开闭链字段***) not in   (Select 不含开闭链字段*** From <临时表-开链-pre>
   );-- 4 今天需要闭链的数据,即今天发生变化的记录Insert into <临时表-增量-upd>
Select 不含开闭链字段***,开始时间From <临时表-开链-pre>
where (不含开闭链字段***) not in   (Select 不含开闭链字段*** From <临时表-开链-cur>
   );-- 5 更新闭链数据,即历史记录闭链(删除-插入替代更新)DELETE FROM <目标表>
WHERE (PK***) IN(Select PK*** From <临时表-增量-upd>)
AND 结束日期=date'<最大日期>';
INSERT INTO <目标表>
      (不含开闭链字段***,开始时间,结束日期)Select 不含开闭链字段***,开始时间,date'<数据日期>'
From <临时表-增量-upd>;
-- 6 插入开链数据,即当日新增记录INSERT INTO <目标表> .
      (不含开闭链字段***,开始时间,结束日期)Select 不含开闭链字段***,date'<数据日期>',date'<最大日期>'
From <临时表-增量-ins>;

增量拉链模型

> 应用场景

增量拉链,目的是追踪数据增量变化历史,根据PK比对新拉一条开链数据;

算法实现逻辑

1.提取上日开链数据;

2.PK相同变化记录,关闭旧记录链,开启新记录链;

3.PK不同,源表存在,新增开链记录

> ETL代码原型

--   1. 提取当前有效记录
Insert into <临时表-开链-pre> (不含开闭链字段***)
Select 不含开闭链字段***From <目标表>
Where 结束日期 =date'<最大日期>';
--   2. 提取当日源系统增量记录<源表临时表-cur>
--   3. 提取当日源系统新增记录Insert into <临时表-增量-ins>
Select 不含开闭链字段***From <临时表-开链-cur>
where (***PK***) not in  (select ***PK*** from <临时表-开链-pre>);
--   4. 提取当日源系统历史变化记录Insert into <临时表-增量-upd>
Select 不含开闭链字段***From <临时表-开链-cur>
inner join <临时表-开链-pre>
on (***PK 等值***)where (***变化字段 非等值***);--   5. 更新历史变化记录,关闭历史旧链,开启新链update <目标表> AS T1
SET <***变化字段 S1赋值***>,结束日期 = date'<数据日期>'
FROM <临时表-增量-upd> AS S1
WHERE ( <***PK 等值***> )
AND   T1.结束日期 =date'<最大日期>'
;INSERT INTO <目标表>
      (不含开闭链字段***,开始时间,结束日期)SELECT 不含开闭链字段***,date'<数据日期>',date'<最大日期>'
FROM <临时表-增量-upd>;
--   6. 插入全新开链数据INSERT INTO <目标表>
      (不含开闭链字段***,开始时间,结束日期)SELECT 不含开闭链字段***,date'<数据日期>',date'<最大日期>'
FROM <临时表-增量-ins>;

增删拉链模型

> 应用场景

主要是利用业务字段跟踪增量数据中包含删除的变化历史。

> 算法实现逻辑

1.提取上日开链数据;

2.提取源表非删除记录;

3.PK相同变化记录,关闭旧记录链,开启新记录链;

4.PK比对,源表存在,新增开链记录;

5.提取源表删除记录;

6.PK比对,旧开链记录存在,关闭旧记录链;

ETL代码原型

--   1. 清理目标表《待续...》
TRUNCATE TABLE <目标表>;
 --   2. 全量插入INSERT INTO <目标表>   (字段***)
SELECT 字段***FROM <源表>
***JOIN <关联数据>
WHERE   ***;

全量增删拉链模型

> 应用场景

主要是利用业务字段跟踪全量数据中包含删除的变化历史。


> 算法实现逻辑

1.提取上日开链数据;

2.提取源表非删除记录;

3.PK相同变化记录,关闭旧记录链,开启新记录链;

4.PK比对,源表存在,新增开链记录;

5.提取源表删除记录;

6.PK比对,旧开链记录存在,关闭旧记录链;

7.PK比对,提取旧开链存在但源表不存在记录,关闭旧记录链;

ETL代码原型

--   1. 清理目标表,《待续...》
TRUNCATE TABLE <目标表>;
 --   2. 全量插入INSERT INTO <目标表>   (字段***)
SELECT 字段***FROM <源表>
***JOIN <关联数据>
WHERE   ***;

自拉链模型

> 应用场景

主要将流水表数据转化成拉链表数据。


> 算法实现逻辑

借助源表业务日期字段,和目标表开链、闭链日期比对,首尾相接,拉出全历史拉链;


> ETL代码原型

--   1. 清理目标表,《待续...》
TRUNCATE TABLE <目标表>;
 --   2. 全量插入INSERT INTO <目标表>   (字段***)
SELECT 字段***FROM <源表>
***JOIN <关联数据>
WHERE   ***;

其它说明

1.根据数据仓库最佳实践,所有数据表通常还会包含一些控制字段,即插入日期、更新日期、更新源头字段,这样对于数据变化敏感的数据仓库,可以进一步追踪数据变化历史;

2.ETL算法本身是为了更好服务于数据加工过程,实际业务实现过程中,并不局限于传统算法,即涉及到更多适应业务的自定义的ETL算法。

声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>