<返回更多

Python哈希表和解析式

2020-07-24    
加入收藏

1. 封装和解构

1.1 封装

说明: 等号(=)右边有多个数值仅通过逗号分割,就会封装到一个元组,称为封装packing。

# 示例:
x = 1,
y = 1,2
print(type(x), x)
print(type(y), y)

# 输出结果如下:
<class 'tuple'> (1,)
<class 'tuple'> (1, 2)

备注: 如果右边只有一个数值且没有用逗号,其实是一个整数类型,请留意。另外等号右边一定先运行,再赋值给左边。

1.2 解构

说明: 等号(=)右边容器类型的元素与左边通过逗号分割的变量要一 一对应,称为解构unpacking。

x,y = (1,2)  # [1,2] {1,2} {'a':1,'b':2}
print(x)
print(y)

# 输出结果如下:
1
2

备注: 右边的容器可以是元组、列表、字典、集合等,必须是可迭代对象。

错误示范:

x,y = (1,2,3)
print(x)
print(y)

# 输出结果如下:
ValueError: too many values to unpack (expected 2)

说明: 左、右两边个数一定要一致,不然会抛出'ValueError'错误。

剩余变量解构

说明: Python3引入了剩余变量解构(rest),'尽可能'收集剩下的数据组成一个列表。

x, *rest = [1,2,3,4,5,6]
print(type(x), x)
print(type(rest), rest)  # 剩余没有赋值的就是rest的了

# 输出结果如下:
<class 'int'> 1
<class 'list'> [2, 3, 4, 5, 6]
*rest, y = [1,2,3,4,5,6]
print(type(rest), rest)
print(type(y), y)

# 输出结果如下:
<class 'list'> [1, 2, 3, 4, 5]
<class 'int'> 6

错误示例:

另外一种丢弃变量下划线:'_'

说明: '_'是合法的标识符,大多场景表示不关心该值。

x, *_, y = [1,2,3,4,5,6]
print(x)
print(_)
print(y)
# 输出结果如下:
1
[2, 3, 4, 5]
6
_, *rest, _ = [1,2,3,4,5,6]
print(_)  # '_'是上一次输出值
print(rest)
# 输出结果如下:
6
[2, 3, 4, 5]

2. 集合Set

说明: 集合是'可变的、无序的、不重复'的元素集合。

成为集合元素是有条件的:'元素必须可hash、可迭代'

可哈希对象如下(不可变):

可以通过内置hash函数判断是否可hash:

s1 = [1,2,3]
print(hash(s1))

# 输出结果如下:
TypeError: unhashable type: 'list'  # 列表是不可hash的

2.1 初始化

说明:

s = {}  # 注意这个是空字典,不是空集合
s1 = set()  # 空集合
s2 = set([1,2,3])  # 注意列表里面元素迭代出来的是整数,可hash
s3 = set("abcd")
print(s1)
print(s2)
print(s3)

# 输出结果如下:
set()
{1, 2, 3}
{'c', 'd', 'a', 'b'}

错误示例:

s = set([[1]]) # 列表套列表,迭代出来是列表,不可hash
print(s)

# 输出结果如下:
TypeError: unhashable type: 'list'

2.2 增加

s1 = set([1,2,3])
s1.add(4)
print(s1)

# 输出结果如下:
{1, 2, 3, 4}
s1 = set([1,2,3])
s1.update((4,5,6),[7,8,9])
print(s1)

# 输出结果如下:
{1, 2, 3, 4, 5, 6, 7, 8, 9}

2.3 删除

2.4 遍历

说明: 集合是个容器,是可以遍历的,但是效率都是O(n)。

s1 = {1,2,3}
for s in s1:
    print(s)
# 输出结果如下:
1
2
3

说到这里,你觉得集合set和列表list哪个遍历效率更高呢?

答案是set,因为set的元素是hash值作为key(下面讲的字典也是hash值),查询时间复杂度为O(1),而list是线性数据结构,时间复杂度是O(n)。

大家可以按照如下进行验证下,随着数据规模越来越大,很明显就可以看出哪个效率高。

Python哈希表和解析式

 

2.5 并集&交集&差集&对称差集

3.字典

说明: 字典是由任意个item(元素)组成的集合,item是由key:value对组成的二元组。

3.1 初始化

# 空字典
d1 = {}
d2 = dict()

# 示例:
d3 = dict(a=1,b=2,c=3)
d4 = dict(d3)
d5 = dict([('a',1),('b',2),('c',3)])  # 元素必须是可迭代的
d6 = {'a':1,'b':2,'c':3}

# 输出结果都是:
{'a': 1, 'b': 2, 'c': 3}

3.2 增删改查

2)d.popitem()

3)d.clear()

正常访问元素:

d = {'a':1,'b':2,'c':3}
print(d['a'])
print(d.get('b'))

# 输出结果如下:
1
2

key不存在的处理方式:

d = {'a':1,'b':2,'c':3}
print(d.get('d',None))  # 如果key不存在,缺省返回None
print(d.setdefault('d',100))  # 如果key不存在,则新增key:value对
print(d)

# 输出结果如下:
None
100
{'a': 1, 'b': 2, 'c': 3, 'd': 100}

3.3 遍历

4.解析式和生成器表达式

4.1 列表解析式

语法

优点

示例需求:请从给定区间中提取能够被2整除的元素。

大众普遍的写法:

list = []
for i in range(10):
    if i % 2 == 0:
        list.append(i)
print(list)

# 输出结果如下:
[0, 2, 4, 6, 8]

再来感受一下简单而优雅的写法:

print([i for i in range(10) if i % 2 == 0])

# 输出结果如下:
[0, 2, 4, 6, 8]

以上就是列表解析式,也叫列表推倒式。

4.2 生成器表达式

语法

特点:

看下生成器对象是长什么样的(不要认为是元组解析式,哈哈):

x = (i for i in range(10) if i % 2 == 0)
print(type(x))
print(x)

# 输出结果如下:
<class 'generator'>  # 生成器
<generator object <genexpr> at 0x000001A143ACBA98> # 生成器对象

那生成器对象是如何计算得到结果:

import time
x = (i for i in range(10) if i % 2 == 0)
for i in range(6):  # 仅一次循环取值
    time.sleep(0.5)
    print(next(x))
 time.sleep(1)
print(next(x))  # for循环已经计算完所有结果了,不能取值,故抛出异常

# 输出结果如下:
0
2
4
6
8
StopIteration  # 已经超出可迭代范围,抛出异常

备注:生成器表达式只能迭代一次。

4.3 集合解析式

集合解析式和列表解析式语法类似,不做过多解析。

语法:

示例:

print({i for i in range(10) if i % 2 == 0})

# 输出结果如下:
{0, 2, 4, 6, 8}

4.4 字典解析式

字典解析式和集合解析式语法类似,不做过多解析。

语法:

示例:

print({i:(i+1) for i in range(10) if i % 2 == 0})

# 输出结果如下:
{0: 1, 2: 3, 4: 5, 6: 7, 8: 9}

总体来说,解析式写起来如果让人简单易懂、又高效,是非常推荐大家使用的。

但有的场景写起来很复杂,那还是得用for...in循环拆分来写。

声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>