今天分享一道超简单的博弈题,通过找规律的方式来发现其中的奥秘,最后只需要一行代码解决。
爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。
最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:
如果玩家无法执行这些操作,就会输掉游戏。
只有在爱丽丝在游戏中取得胜利时才返回 True,否则返回 false。假设两个玩家都以最佳状态参与游戏。
示例 1:
输入:2 输出:true 解释:爱丽丝选择 1,鲍勃无法进行操作。
示例 2:
输入:3 输出:false 解释:爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。
提示:
对于这种博弈类的题目,如果没有思路的话我们不妨多举几个例子,尝试着从中找寻规律。
貌似有个规律:N 为奇数时, 鲍勃获胜;N 为偶数时, 爱丽丝获胜。
是这样吗?
是的。
事实上,无论 N 为多大,最终都是在 N = 2 这个临界点结束的。谁最后面对的是 N = 2 的情形,谁就能获胜(这句话不太理解的话,仔细看看 N = 2、N = 3 这两种情形)。
接下来,我们得知道一个数学小知识:奇数的因子(约数)只能是奇数,偶数的因子(约数)可以是奇数或偶数。
千万不要忽略 1 也是因子!
爱丽丝是游戏开始时的先手。
class Solution { public boolean divisorGame(int N) { return N % 2 == 0; } }