<返回更多

物联网编程之通信框架-Netty(一)

2020-03-16    
加入收藏

1、引言


Netty 是一个广受欢迎的异步事件驱动的JAVA开源网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端。
本文基于 Netty 4.1 展开介绍相关理论模型,使用场景,基本组件、整体架构,知其然且知其所以然,希望给大家在实际开发实践、学习开源项目方面提供参考。

2、相关资料


Netty源码在线阅读:

Netty在线API文档:

3、JDK 原生 NIO 程序的问题

JDK 原生也有一套网络应用程序 API,但是存在一系列问题,主要如下:

4、Netty 的特点


Netty 对 JDK 自带的 NIO 的 API 进行了封装,解决了上述问题。
Netty的主要特点有:

5、Netty 常见使用场景


Netty 常见的使用场景如下:

非常方便定制和开发私有协议栈,账号登录服务器,地图服务器之间可以方便的通过 Netty 进行高性能的通信。

有兴趣的读者可以了解一下目前有哪些开源项目使用了 Netty的Related Projects:https://netty.io/wiki/related-projects.html

6、Netty 高性能设计


Netty 作为异步事件驱动的网络,高性能之处主要来自于其 I/O 模型和线程处理模型,前者决定如何收发数据,后者决定如何处理数据(重点理解这点)。
6.1I/O 模型

用什么样的通道将数据发送给对方,BIO、NIO 或者 AIO,I/O 模型在很大程度上决定了框架的性能。
【阻塞 I/O】:
传统阻塞型 I/O(BIO)可以用下图表示:

物联网编程之通信框架-Netty(一)

 

特点如下:

【I/O 复用模型】:

物联网编程之通信框架-Netty(一)

 

在 I/O 复用模型中,会用到 Select,这个函数也会使进程阻塞,但是和阻塞 I/O 所不同的是这两个函数可以同时阻塞多个 I/O 操作。
而且可以同时对多个读操作,多个写操作的 I/O 函数进行检测,直到有数据可读或可写时,才真正调用 I/O 操作函数。
Netty 的非阻塞 I/O 的实现关键是基于 I/O 复用模型,这里用 Selector 对象表示:

物联网编程之通信框架-Netty(一)

 

Netty 的 IO 线程 NioEventLoop 由于聚合了多路复用器 Selector,可以同时并发处理成百上千个客户端连接。
当线程从某客户端 Socket 通道进行读写数据时,若没有数据可用时,该线程可以进行其他任务。
线程通常将非阻塞 IO 的空闲时间用于在其他通道上执行 IO 操作,所以单独的线程可以管理多个输入和输出通道。
由于读写操作都是非阻塞的,这就可以充分提升 IO 线程的运行效率,避免由于频繁 I/O 阻塞导致的线程挂起。
一个 I/O 线程可以并发处理 N 个客户端连接和读写操作,这从根本上解决了传统同步阻塞 I/O 一连接一线程模型,架构的性能、弹性伸缩能力和可靠性都得到了极大的提升。
【基于 Buffer】:
传统的 I/O 是面向字节流或字符流的,以流式的方式顺序地从一个 Stream 中读取一个或多个字节, 因此也就不能随意改变读取指针的位置。
在 NIO 中,抛弃了传统的 I/O 流,而是引入了 Channel 和 Buffer 的概念。在 NIO 中,只能从 Channel 中读取数据到 Buffer 中或将数据从 Buffer 中写入到 Channel。
基于 Buffer 操作不像传统 IO 的顺序操作,NIO 中可以随意地读取任意位置的数据。

6.2线程模型


数据报如何读取?读取之后的编解码在哪个线程进行,编解码后的消息如何派发,线程模型的不同,对性能的影响也非常大。
【事件驱动模型】:
通常,我们设计一个事件处理模型的程序有两种思路:

以 GUI 的逻辑处理为例,说明两种逻辑的不同:

这里借用 O'Reilly 大神关于事件驱动模型解释图:

物联网编程之通信框架-Netty(一)

 

主要包括 4 个基本组件:

可以看出,相对传统轮询模式,事件驱动有如下优点:

【Reactor 线程模型】:
Reactor 是反应堆的意思,Reactor 模型是指通过一个或多个输入同时传递给服务处理器的服务请求的事件驱动处理模式。
服务端程序处理传入多路请求,并将它们同步分派给请求对应的处理线程,Reactor 模式也叫 Dispatcher 模式,即 I/O 多了复用统一监听事件,收到事件后分发(Dispatch 给某进程),是编写高性能网络服务器的必备技术之一。
Reactor 模型中有 2 个关键组成:

物联网编程之通信框架-Netty(一)

 


取决于 Reactor 的数量和 Hanndler 线程数量的不同,Reactor 模型有 3 个变种:

可以这样理解,Reactor 就是一个执行 while (true) { selector.select(); …} 循环的线程,会源源不断的产生新的事件,称作反应堆很贴切。
篇幅关系,这里不再具体展开 Reactor 特性、优缺点比较,有兴趣的读者可以参考我之前另外一篇文章:《高性能网络编程(五):一文读懂高性能网络编程中的I/O模型》、《高性能网络编程(六):一文读懂高性能网络编程中的线程模型》。
【Netty 线程模型】:
Netty 主要基于主从 Reactors 多线程模型(如下图)做了一定的修改,其中主从 Reactor 多线程模型有多个 Reactor:

这里引用 Doug Lee 大神的 Reactor 介绍——Scalable IO in Java 里面关于主从 Reactor 多线程模型的图:

物联网编程之通信框架-Netty(一)

 


特别说明的是:虽然 Netty 的线程模型基于主从 Reactor 多线程,借用了 MainReactor 和 SubReactor 的结构。但是实际实现上 SubReactor 和 Worker 线程在同一个线程池中:

EventLoopGroup bossGroup = new NioEventLoopGroup();

EventLoopGroup workerGroup = new NioEventLoopGroup();

ServerBootstrap server = new ServerBootstrap();

server.group(bossGroup, workerGroup)

.channel(NIOServerSocketChannel.class)


上面代码中的 bossGroup 和 workerGroup 是 Bootstrap 构造方法中传入的两个对象,这两个 group 均是线程池:

【异步处理】:
异步的概念和同步相对。当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的部件在完成后,通过状态、通知和回调来通知调用者。
Netty 中的 I/O 操作是异步的,包括 Bind、Write、Connect 等操作会简单的返回一个 ChannelFuture。
调用者并不能立刻获得结果,而是通过 Future-Listener 机制,用户可以方便的主动获取或者通过通知机制获得 IO 操作结果。
当 Future 对象刚刚创建时,处于非完成状态,调用者可以通过返回的 ChannelFuture 来获取操作执行的状态,注册监听函数来执行完成后的操作。
常见有如下操作:

例如下面的代码中绑定端口是异步操作,当绑定操作处理完,将会调用相应的监听器处理逻辑:

serverBootstrap.bind(port).addListener(future -> {

if (future.isSuccess()) {

System.out.println(new Date() + ": 端口[" + port + "]绑定成功!");

} else {

System.err.println("端口[" + port + "]绑定失败!");

}

});


相比传统阻塞 I/O,执行 I/O 操作后线程会被阻塞住, 直到操作完成;异步处理的好处是不会造成线程阻塞,线程在 I/O 操作期间可以执行别的程序,在高并发情形下会更稳定和更高的吞吐量。

声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>