<返回更多

算法系列之接雨水

2022-08-15    XieYiwen
加入收藏

本题来自Leetcode,题目传送门:「链接」

难度:困难

编程语言:Go

1. 题目介绍

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

引用自Leetcode


 

提示:

1. n == height.length

2. 1 <= n <= 

3. 0 <= height[i] <= 

2. 解题思路

要接住雨水,必须形成凹槽。

第一种思路:找到这个柱子左边最高的,和右边最高的,然后计算这个柱子能接到的雨水。量=min(左边最高,右边最高)。

这种方法下:

1. 每一个柱子都要往两边扩散计算,时间复杂度是O(n)

2. 需要两个额外的数组来保留n个柱子能接到的雨水,空间复杂度为O(n).

 

第二种思路:寻找比左边高的柱子。 当找到凹槽后,可累积的雨水为:超过该高度的面积。比如:

    1  ~  ~  ~  1
    1  1  *  1  1
    1  1  1  1  1

从第四个柱子开始,出现第一个凹槽,可累计的雨水是"*",宽为1,高为1 ,累积雨水1个单位。

第五个柱子出现第二个凹槽,其和等高的柱子(第一个柱子)的宽度"~"为3,高为1,所以累积的雨水是3个单位。

图示被丢弃的图样:

         1
      1  1     2
   1  1  1  1  2

从第一个柱子开始,左低右高,无法形成凹槽,丢弃。第三个柱子不能丢弃,因为后面可能存在"2"构成的柱子。第四个柱子同理需要保留,但是同样不累积雨水。

这种方法下:

1. 每一个元素需要入一次栈,时间复杂度为O(n);

2. 需要一个栈来保存柱子的坐标,最坏情况下保留n个,空间复杂度为O(n);

 

第三种思路:由于接到的雨水由左右两个最高的高度的最小值决定,所以可以从左右两侧往中间靠拢,动态的计算左右的最大值。

其中的难点:当从左往右时,左边的最大值是可信的,但是右边的最大值 <= 右边真实的最大值。同理,从右往左也是如此。

这种情况下,如果是从左往右且左边的最大值小于右边的最大值,则该柱子接到的雨水必然等于:左边最大值-当前柱子的高度。同理从右往左,右边最大值小于左边最大值时,也是如此。

则这种情况下,按照相同方向靠拢是可靠的,如从左往右的继续向右计算下一个柱子的累积雨水情况。如果左边最大值小于右边最大值,则右边向左靠拢。

这种方法下:

1. 每一个元素需要一次遍历,时间复杂度为O(n);

2. 需要保留leftMax和rightMax,空间复杂度为O(1)。

3. 源码展示

先上测试

 

第一种方法比较简单,此处不实现。

第二种方法:

 

第三种方法:

 

Leetcode运算结果

方法二:

方法三:

声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>