<返回更多

python爬虫之Scrapy框架,基本介绍使用以及用框架下载图片案例

2022-11-16  今日头条  运维笔记ywbj
加入收藏

一、Scrapy框架简介

Scrapy是:由Python/ target=_blank class=infotextkey>Python语言开发的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据,只需要实现少量的代码,就能够快速的抓取。

Scrapy使用了Twisted异步网络框架来处理网络通信,可以加快我们的下载速度,不用自己去实现异步框架,并且包含了各种中间件接口,可以灵活地实现各种需求。

Scrapy可以应用在包括数据挖掘、信息处理或存储历史数据等一系列的程序中,其最初是为页面抓取(更确切地说是网络抓取)而设计的,也可以应用于获取API所返回的数据(例如Amazon Associates Web Services)或者通用的网络爬虫。

二、Scrapy架构

1、架构图

官方架构图

 

翻译架构图

 

2、组件

Scrapy主要包括了以下组件:

Scrapy引擎(ScrapyEngine):用来控制整个系统的数据处理流程,并进行事务处理的触发。

3、运行流程

数据流(Data flow),Scrapy中的数据流由执行引擎(ScrapyEngine)控制,其过程如下:

  1. 引擎打开一个网站(open a domain),找到处理该网站的Spider并向该spider请求第一个要爬取的URL(s)。
  2. 引擎从Spider中获取到第一个要爬取的URL并在调度器(Scheduler)以Request调度。
  3. 引擎向调度器请求下一个要爬取的URL。
  4. 调度器返回下一个要爬取的URL给引擎,引擎将URL通过下载中间件(请求(request)方向)转发给下载器(Downloader)。
  5. 一旦页面下载完毕,下载器生成一个该页面的Response,并将其通过下载中间件(返回(response)方向)发送给引擎。
  6. 引擎从下载器中接收到Response并通过Spider中间件(输入方向)发送给Spider处理。
  7. Spider处理Response并返回爬取到的Item及(跟进的)新的Request给引擎。
  8. 引擎将(Spider返回的)爬取到的Item给Item Pipeline,将(Spider返回的)Request给调度器。
  9. (从第二步)重复直到调度器中没有更多地request,引擎关闭该网站

三、Scrapy安装以及生成项目

1、下载安装

linux下载方式,直接安装

pip install scrapy
或者
pip3 install scrapy)

windows 如果用Pycharm的话,在Pycharm底部打开命令终端

 

输入命令

pip install scrapy

 

2、创建Scrapy项目

#创建一个叫ScrapyDemmo
scrapy startproject ScrapyDemmo
#进入项目文件夹
cd ScrapyDemmo
#创建一个名为baidu的爬虫,爬虫目标www.baidu.com
scrapy genspider baidu www.baidu.com

创建完成后,目录结构如下:

 

spiders下的baidu.py是scrapy用命令(scrapy genspider baidu www.baidu.com)自动为我们生成的。

内容如下:

import scrapy

class BaiduSpider(scrapy.Spider):
    name = 'baidu'
    allowed_domains = ['www.baidu.com']
    start_urls = ['http://www.baidu.com/']

    def parse(self, response):
        title = response.xpath('//html/dead/title/text()')
        print(title)

当然,可以不用命令生成,可以自己在spiders下创建爬虫,您必须继承 scrapy.Spider 类, 且定义以下三个属性:

3、运行爬虫

运行方法:

在项目目录底下用命令运行,如下,我项目目录 D:PythonScrapyDemmo,运行name为baidu的爬虫

D:PythonScrapyDemmo> scrapy crawl baidu

 

在scrapy中,为了避免每一次运行或调试都输入一串命令,可以在项目文件下新建一个run.py文件,每次运行爬虫只需要运行此脚本即可。且运行调试模式也需要设置此启动脚本。

from scrapy import cmdline

cmdline.execute("scrapy crawl baidu".split())

最后运行这个run.py即可,执行结果:

D:PythonvenvScriptspython.exe D:PythonScrapyDemmoScrapyDemmorun.py 
2022-10-28 10:12:55 [scrapy.utils.log] INFO: Scrapy 2.7.0 started (bot: ScrapyDemmo)
2022-10-28 10:12:55 [scrapy.utils.log] INFO: Versions: lxml 4.9.1.0, libxml2 2.9.12, cssselect 1.1.0, parsel 1.6.0, w3lib 2.0.1, Twisted 22.8.0, Python 3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit (AMD64)], pyOpenSSL 22.1.0 (OpenSSL 3.0.5 5 Jul 2022), cryptography 38.0.1, Platform Windows-10-10.0.22000-SP0
2022-10-28 10:12:55 [scrapy.crawler] INFO: Overridden settings:
{'BOT_NAME': 'ScrapyDemmo',
 'NEWSPIDER_MODULE': 'ScrapyDemmo.spiders',
 'REQUEST_FINGERPRINTER_IMPLEMENTATION': '2.7',
 'ROBOTSTXT_OBEY': True,
 'SPIDER_MODULES': ['ScrapyDemmo.spiders'],
 'TWISTED_REACTOR': 'twisted.inte.NET.asyncioreactor.AsyncIOSelectorReactor'}
2022-10-28 10:12:55 [asyncio] DEBUG: Using selector: SelectSelector
...
...

若嫌弃scrapy日志文件太杂乱,想无日志输出,只需在后面增加--nolog即可:

from scrapy import cmdline

cmdline.execute('scrapy crawl baidu --nolog'.split())

执行导出为json或scv格式,执行爬虫文件时添加-o选项即可

scrapy crawl 项目名 -o *.csv

scrapy crawl 项目名 -o *.json

对于json文件,在setting.js文件里添加,设置编码格式,否则会乱码:

from scrapy import cmdline
 
cmdline.execute('scrapy crawl baidu -o baidu.csv'.split())

四、Scrapy配置文件settings.py

默认配置文件,主要设置参数:

BOT_NAME = 'ScrapyDemmo' #Scrapy项目的名字,这将用来构造默认 User-Agent,同时也用来log,当您使用 startproject 命令创建项目时其也被自动赋值。

SPIDER_MODULES = ['ScrapyDemmo.spiders'] #Scrapy搜索spider的模块列表 默认: [xxx.spiders]
NEWSPIDER_MODULE = 'ScrapyDemmo.spiders' #使用 genspider 命令创建新spider的模块。默认: 'xxx.spiders'  


#爬取的默认User-Agent,除非被覆盖 
#USER_AGENT = 'ScrapyDemmo (+http://www.yourdomain.com)'

#如果启用,Scrapy将会采用 robots.txt策略 
ROBOTSTXT_OBEY = True

#Scrapy downloader 并发请求(concurrent requests)的最大值,默认: 16 
#CONCURRENT_REQUESTS = 32

#为同一网站的请求配置延迟(默认值:0) 
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3 #下载器在下载同一个网站下一个页面前需要等待的时间,该选项可以用来限制爬取速度,减轻服务器压力。同时也支持小数:0.25 以秒为单位  

#下载延迟设置只有一个有效 
#CONCURRENT_REQUESTS_PER_DOMAIN = 16  #对单个网站进行并发请求的最大值。
#CONCURRENT_REQUESTS_PER_IP = 16	#对单个IP进行并发请求的最大值。如果非0,则忽略

#禁用Cookie(默认情况下启用) 
#COOKIES_ENABLED = False

#禁用Telnet控制台(默认启用) 
#TELNETCONSOLE_ENABLED = False

#覆盖默认请求标头:  
#DEFAULT_REQUEST_HEADERS = {
#   'Accept': 'text/html,Application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#   'Accept-Language': 'en',
#}

#项目管道,300为优先级,越低越爬取的优先度越高
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
#ITEM_PIPELINES = {
#    'ScrapyDemmo.pipelines.ScrapydemmoPipeline': 300,
#}

还可以设置日志的等级与日志存放的路径:

相关变量

LOG_LEVEL= ""
LOG_FILE="日志名.log"

日志等级分为,默认等级是1

  1. DEBUG 调试信息
  2. INFO 一般信息
  3. WARNING 警告
  4. ERROR 普通错误
  5. CRITICAL 严重错误

如果设置

LOG_LEVEL="WARNING",就只会WARNING等级之下的ERROR和CRITICAL

一般主要需要配置的几个参数,其他按需配置即可。

USER_AGENT:默认是注释的,这个东西非常重要,如果不写很容易被判断为电脑爬虫。

ROBOTSTXT_OBEY:是否遵循机器人协议,默认是true,需要改为false,否则很多东西爬不了

DEFAULT_REQUEST_HEADERS:和USER_AGENT类似,只是参数更完整。

五、完整案例(下载图片)

用scrapy框架下载以前的示例:python爬虫之批量下载图片

1、修改settings.py 主要参数

#关闭robot.txt协议
ROBOTSTXT_OBEY = False

#页面延迟下载,我这里测试,可以先不设置
DOWNLOAD_DELAY = 1

# 是否启用Cookie
COOKIES_ENABLED = True

#请求头 
DEFAULT_REQUEST_HEADERS = {
  'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
  'Accept-Language': 'en',
  'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36'
}
#打开下载器
DOWNLOADER_MIDDLEWARES = {
    'ScrapyDemmo.middlewares.ScrapydemmoDownloaderMiddleware': 543,
}
#打开优先级,并添加自己编写的图片下载管道
ITEM_PIPELINES = {
   'ScrapyDemmo.pipelines.ScrapydemmoPipeline': 300,
   'ScrapyDemmo.pipelines.ImageDownloadPipeline': 300,
}
#添加下载储存目录
IMAGES_STORE = 'D:Pythonpic'

# 文件保存时间
#IMAGES_EXPIRES = 90

2、定义Item字段(Items.py)

本项目用于下载图片,因此可以仅构建图片名和图片地址字段。

import scrapy


class ScrapydemmoItem(scrapy.Item):
	#图片下载链接
    image_url = scrapy.Field()
    #图片名称
    image_name = scrapy.Field()

3、编写爬虫文件(spiders目录下)

这里文件名为:image_download.py

以前用requests库和BeautifulSoup库下载图片,这里就不需要了,scrapy自带相关函数和方法。

scrapy元素定位,提供三种方式,正则、Xpath表达式、css。

我这里有xpath定位方式。

import scrapy
import re
from ..items import ScrapydemmoItem

class ImageSpider(scrapy.Spider):
    name = 'image_download'
    allowed_domains = ['desk.3gbizhi.com']
    start_urls = ['https://desk.3gbizhi.com/deskMV/index.html']

    def parse(self, response):
    	#导入Items.py字段
        items = ScrapydemmoItem()
        #获取所有链接列表
        lists = response.xpath('//div[5]/ul/li')
        #点位元素循环获取图片链接和图片名称
        for i in lists:
        	#图片名称
            image_name = i.xpath('./a/img/@alt').get()
            #图片链接
            items['image_url'] = i.xpath('./a/img/@*[1]').get().replace('.278.154.jpg', '')
            #图片格式类型
            image_type = re.sub(r'h.*d+.', '', items['image_url'])
            #拼接文件名,图片名称+图片格式
            items['image_name'] = '{}.{}'.format(image_name, image_type)
            yield  items
		#循环跳转下一页,并重复返回数据,这里测试先下载1页的图片,总共23页。
        for i in range(2,3):
            next_url = 'https://desk.3gbizhi.com/deskMV/index_{}.html'.format(i)
            yield scrapy.Request(next_url,callback=self.parse)

关于 yield 的理解,⾸先,如果你还没有对yield有个初步分认识,那么你先把yield看做“return”,这个是直观的,它⾸先是个return。

最主要的不同在于yield在返回值后还可以继续运行接下来的代码,使用的函数会返回一个生成器,而return在返回后就不在执行代码。

以上两个yield:

4、修改管道文件pipelines.py用于下载图片

除了爬取文本,我们可能还需要下载文件、视频、图片、压缩包等,这也是一些常见的需求。scrapy提供了FilesPipeline和ImagesPipeline,专门用于下载普通文件及图片。

继承 Scrapy 内置的 ImagesPipeline,只需要重写get_media_requests 和item_completed函数即可。

from scrapy.pipelines.images import ImagesPipeline
from scrapy.exceptions import DropItem
from scrapy import Request

class ScrapydemmoPipeline:
    def process_item(self, item, spider):
        return item

class ImageDownloadPipeline(ImagesPipeline):
    def get_media_requests(self, item, info):
    	# 下载图片,如果传过来的是集合需要循环下载
    	# meta里面的数据是从spider获取,然后通过meta传递给下面方法:file_path
        yield Request(url = item['image_url'],meta = {'filename':item['image_name']})

    def item_completed(self, results, item, info):
     	# 分析下载结果并剔除下载失败的图片
        image_paths = [x['path'] for ok, x in results if ok]
        if not image_paths:
            raise DropItem("Item contains no images")
        return item

    def file_path(self, request, response=None, info=None):
    	# 接收上面meta传递过来的图片名称
        file_name = request.meta['filename']
        return file_name

以上两个函数即可下载图片了,图片名称为自动已哈希值命名,如:
0db6e07054d966513f0a6f315b687f205c7ced90.jpg 这种命名方式不友好,所以我们需要重写 file_path函数,自定义图片名称。

5、编写执行文件run.py运行

在项目下新建run.py作为执行文件

from scrapy import cmdline

#cmdline.execute('scrapy crawl image_download --nolog'.split())
cmdline.execute('scrapy crawl image_download'.split())

运行此文件,执行结果,在目录下载第一页壁纸完成。

 

六、小结

除了 ImagesPipeline 处理图片外,还有 FilesPipeline 可以处理文件,使用方法与图片类似,事实上 ImagesPipeline 是 FilesPipeline 的子类,因为图片也是文件的一种。

Scrapy很强大,对于大型网站非常实用,还可以同时运行多个爬虫程序,提升效率。Scrapy还有很多功能,可以自己研究。

声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>