<返回更多

LLaMa 量化部署常用方案总结

2023-09-05  知乎  Kevin吴嘉文
加入收藏

本文导论部署 LLaMa 系列模型常用的几种方案,并作速度测试。包括 Huggingface 自带的 LLM.int8(),AutoGPTQ, GPTQ-for-LLaMa, exllama, llama.cpp。

总结来看,对 7B 级别的 LLaMa 系列模型,经过 GPTQ 量化后,在 4090 上可以达到 140+ tokens/s 的推理速度。在 3070 上可以达到 40 tokens/s 的推理速度。

LM.int8()

来自论文:LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

LM.int8() 时 Hugingface 集成的量化策略。能够通过在 .from_pretrAIn() 时候传递 load_in_8bit 来实现,针对几乎所有的 HF Transformers 模型都有效。大致方法是,在矩阵点积计算过程中, 将其中的 outliers 参数找出来(以行或列为单位),然后用类似 absolute maximum (absmax) quantization 的方法,根据行/列对 Regular 参数做量化处理,outlier 参数仍然做 fp16 计算,最后相加。

 

根据 huggingface 的博客 (
https://huggingface.co/blog/hf-bitsandbytes-integration), LLM.INT8() 能够再模型性能不影响很多的前提下,让我们能用更少的资源进行 LLM 推理。但 LLM.int8() 普遍的推理速度会比 fp16 慢。博客中指出,对于越小的模型, int8() 会导致更慢的速度。

结合论文中的实验结果,模型越大,int8() 加速越明显,个人猜测是由于非 outlier 数量变多了,更多的参数进行了 int8 计算,抵消了额外的量化转化时间开销?

 

GPTQ

GPTQ: ACCURATE POST-TRAINING QUANTIZATION FOR GENERATIVE PRE-TRAINED TRANSFORMERS

使用 GPTQ 量化的模型具有很大的速度优势,与 LLM.int8() 不同,GPTQ 要求对模型进行 post-training quantization,来得到量化权重。GPTQ 主要参考了 Optimal Brain Quanization (OBQ),对OBQ 方法进行了提速改进。有网友在 文章 中对 GPTQ, OBQ, OBS 等量化策略进行了整理,这里就不多赘述了。

以下对几个 GPTQ 仓库进行介绍。以下所有测试均在 4090 上进行,模型推理速度采用
oobabooga/text-generation-webui (https://Github.com/oobabooga/text-generation-webui) 提供的 UI。

GPTQ-for-LLaMa

专门针对 LLaMa 提供 GPTQ 量化方案的仓库,如果考虑 GPU 部署 LLaMa 模型的话,GPTQ-for-LLaMa 是十分指的参考的一个工具。像 http://huggingface.co 上的 Thebloke 很大部分模型都是采用 GPTQ-for-LLaMa 进行量化的。

Post Training Quantization:GPTQ-for-LLaMa 默认采用 C4 (
https://huggingface.co/datasets/allenai/c4) 数据集进行量化训练(只采用了 C4 中英文数据的一部分进行量化,而非全部 9TB+的数据):

CUDA_VISIBLE_DEVICES=0 Python/ target=_blank class=infotextkey>Python llama.py /models/vicuna-7b c4 
    --wbits 4 
    --true-sequential 
    --groupsize 128 
    --save_safetensors vicuna7b-gptq-4bit-128g.safetensors

由于 GPTQ 是 Layer-Wise Quantization,因此进行量化时对内存和显存要求会少一点。在 4090 测试,最高峰显存占用 7000MiB,整个 GPTQ 量化过程需要 10 分钟。量化后进行 PPL 测试,7b 在没有 arc_order 量化下,c4 的 ppl 大概会在 5-6 左右:

CUDA_VISIBLE_DEVICES=0 python llama.py /models/vicuna-7b c4 
    --wbits 4 
    --groupsize 128 
    --load vicuna7b-gptq-4bit-128g.safetensors 
    --benchmark 2048 --check

对量化模型在 MMLU 任务上测试(
https://github.com/FranxYao/chain-of-thought-hub/tree/main),量化后 MMLU 为,于 fp16(46.1)稍微有点差距。

Huggingface 上的 TheBloke (
https://huggingface.co/TheBloke) 发布的大部分 LLaMa GPTQ 模型,都是通过以上方式(C4 数据集 + wbit 4 + group 128 + no arc_order + true-sequential)量化的。若由于 GPTQ-for-LLaMa 及 transformers 仓库不断更新,Huggingface.co 上发布的模型可能存在无法加载或精度误差等问题,可以考虑重新量化,并通过优化量化数据集、添加 arc_order 等操作来提高量化精度。

GPTQ-for-LLaMa 的一些坑:

AutoGPTQ

AutoGPTQ 使用起来相对容易,它提供了对大多数 Huggingface LLM 模型的量化方案,如 LLaMa 架构系列模型,bloom,moss,falcon,gpt_bigcode 等。(没在支持表中看到 ChatGLM 系列模型)。具体可以参考 官方的快速上手(
https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/01-Quick-Start.md) 和 进阶使用(https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/02-Advanced-Model-Loading-and-Best-Practice.md) 来进行量化模型训练和部署。

AutoGPTQ 可以直接加载 GPTQ-for-LLaMa 的量化模型:

from auto_gptq import AutoGPTQForCausalLM

model = AutoGPTQForCausalLM.from_quantized(
    model_dir,     # 存放模型的文件路径,里面包含 config.json, tokenizer.json 等模型配置文件
    model_basename="vicuna7b-gptq-4bit-128g.safetensors",
    use_safetensors=True,
    device="cuda:0",
    use_triton=True,    # Batch inference 时候开启 triton 更快
    max_memory = {0: "20GIB", "cpu": "20GIB"}    # 
)

AutoGPTQ 提供了更多的量化加载选项,如是否采用 fused_attention,配置 CPU offload 等。用 AutoGPTQ 加载权重会省去很多不必要的麻烦,如 AutoGPTQ 并没有 GPTQ-for-LLaMa 类似的 left-padding bug,对 Huggingface 其他 LLM 模型的兼容性更好。因此如果做 GPTQ-INT4 batch inference 的话,AutoGPTQ 会是首选。

但对于 LLaMa 系列模型,AutoGPTQ 的速度会明显慢于 GPTQ-for-LLaMa。在 4090 上测试,GPTQ-for-LLaMa 的推理速度会块差不多 30%。

exllama

exllama 为了让 LLaMa 的 GPTQ 系列模型在 4090/3090 Ti 显卡上跑更快,推理平均能达到 140+ tokens/s。当然为了实现那么高的性能加速,exllama 中的模型移除了 HF transformers 模型的大部分依赖,这也导致如果在项目中使用 exllama 模型需要额外的适配工作。text-generation-webui 中对 exllama 进行了 HF 适配,使得我们能够像使用 HF 模型一样使用 exllama,代价是牺牲了一些性能,参考 exllama_hf。

gptq

GPTQ 的官方仓库。以上大部分仓库都是基于官方仓库开发的,感谢 GPTQ 的开源,让单卡 24G 显存也能跑上 33B 的大模型。

GGML

GGML 是一个机械学习架构,使用 C 编写,支持 Integer quantization(4-bit, 5-bit, 8-bit) 以及 16-bit float。同时也对部分硬件架构进行了加速优化。本章中讨论到的 LLaMa 量化加速方案来源于 LLaMa.cpp 。LLaMa.cpp 有很多周边产品,如 llama-cpp-python 等,在下文中,我们以 GGML 称呼这类模型量化方案。

llama.cpp 在一个月前支持了全面 GPU 加速(在推理的时候,可以把整个模型放在 GPU 上推理)。参考后文的测试,LLaMa.cpp 比 AutoGPTQ 有更快的推理速度,但是还是比 exllama 慢很多。

GGML 有不同的量化策略(具体量化类型参考(
https://github.com/ggerganov/llama.cpp%23quantization)),以下使用 Q4_0 对 LLaMa-2-13B-chat-hf 进行量化和测试。

此处采用 Docker with cuda 部署,为方便自定义,先注释掉
.devops/full-cuda.Dockerfile 中的 EntryPoint。而后构建镜像:

docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .

构建成功后开启容器(models 映射到模型文件路径):

docker run -it --name ggml --gpus all -p 8080:8080 -v /home/kevin/models:/models local/llama.cpp:full-cuda bash

参考官方文档 (
https://github.com/ggerganov/llama.cpp%23prepare-data--run),进行权重转换即量化:

# 转换 ggml 权重
python3 convert.py /models/Llama-2-13b-chat-hf/

# 量化
./quantize /models/Llama-2-13b-chat-hf/ggml-model-f16.bin /models/Llama-2-13b-chat-GGML_q4_0/ggml-model-q4_0.bin q4_0

完成后开启server 测试

./server -m /models/Llama-2-13b-chat-GGML_q4_0/ggml-model-q4_0.bin --host 0.0.0.0 --ctx-size 2048 --n-gpu-layers 128

发送请求测试:

curl --request POST 
    --url http://localhost:8080/completion 
    --header "Content-Type: Application/json" 
    --data '{"prompt": "Once a upon time,","n_predict": 200}'

使用 llama.cpp server 时,具体参数解释参考官方文档(
https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md)。主要参数有:

使用 llama.cpp 部署的请求,速度与 llama-cpp-python 差不多。对于上述例子中,发送 Once a upon time, 并返回 200 个字符,两者完成时间都在 2400 ms 左右(约 80 tokens/秒)。

推理部署

记得在bert 时代,部署 Pytorch 模型时可能会考虑一些方面,比如动态图转静态图,将模型导出到 onnx,torch jit 等,混合精度推理,量化,剪枝,蒸馏等。对于这些推理加速方案,我们可能需要自己手动应用到训练好的模型上。但在 LLaMa 时代,感受到最大的变化就是,一些开源的框架似乎为你做好了一切,只需要把你训练好的模型权重放上去就能实现比 HF 模型快 n 倍的推理速度。

以下对比这些推理加速方案:HF 官方 float16(基线), vllm,llm.int8(),GPTQ-for-LLaMa,AUTOGPTQ,exllama, llama.cpp。

Model_nametooltokens/svicuna 7bfloat1643.27vicuna 7bload-in-8bit (HF)19.21vicuna 7bload-in-4bit (HF)28.25vicuna7b-gptq-4bit-128gAUTOGPTQ79.8vicuna7b-gptq-4bit-128gGPTQ-for-LLaMa80.0vicuna7b-gptq-4bit-128gexllama143.0Llama-2-7B-Chat-GGML (q4_0)llama.cpp111.25Llama-2-13B-Chat-GGML (q4_0)llama.cpp72.69Wizard-Vicuna-13B-GPTQexllama90Wizard-Vicuna-30B-uncensored-GPTQexllama43.1Wizard-Vicuna-30B-uncensored-GGML (q4_0)llama.cpp34.03Wizard-Vicuna-30B-uncensored-GPTQAUTOGPTQ31

以上所有测试均在 4090 + Inter i9-13900K上进行,模型推理速度采用
oobabooga/text-generation-webui 提供的 UI(text-generation-webui 的推理速度会比实际 API 部署慢一点)。这边只做速度测试,关于精度测试,可以查看 GPT-for-LLaMa result (https://github.com/qwopqwop200/GPTQ-for-LLaMa%23result) 和 exllama results(https://github.com/turboderp/exllama/tree/master%23new-implementation)。

一些备注

  1. 模型推理的速度受 GPU 即 CPU 的影响最大。有网友指出 link,同样对于 4090,在 CPU 不同的情况下,7B LLaMa fp16 快的时候有 50 tokens/s,慢的时候能达到 23 tokens/s。
  2. 对于 stable diffusion,torch cuda118 能比 torch cuda 117 速度快上1倍。但对于 LLaMa 来说,cuda 117 和 118 差别不大。
  3. 量化 batch inference 首选 AUTOGPTQ (TRITON),尽管 AutoGPTQ 速度慢点,但目前版本的 GPTQ-for-LLaMa 存在 left-padding 问题,无法使用 batch inference;batch size = 1 时,首选 exllama 或者 GPTQ-for-LLaMa。
  4. vllm 部署 fp16 的模型速度也不错(80+ tokens/s),同时也做了内存优化;如果设备资源够的话,可以考虑下 vllm,毕竟采用 GPTQ 还是有一点精度偏差的。
  5. TheBloke 早期发布的一些模型可能无法加载到 exllama 当中,可以使用最新版本的 GPTQ-for-LLaMa 训练一个新模型。
  6. 当显卡容量无法加载整个模型时(比如在单卡 4090 上加载 llama-2-70B-chat),llama.cpp 比 GPTQ 速度更快(参考:https://www.reddit.com/r/LocalLLaMA/comments/147z6as/llamacpp_just_got_full_cuda_acceleration_and_now/?rdt=56220)。
关键词:LLaMa      点击(3)
声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多LLaMa相关>>>