<返回更多

与程序员相关的CPU缓存知识

2020-03-03    
加入收藏
与程序员相关的CPU缓存知识

 

好久没有写一些微观方面的文章了,今天写一篇关于CPU Cache相关的文章,这篇文章会讲述一些多核 CPU 的系统架构以及其原理,包括对程序性能上的影响,以及在进行并发编程的时候需要注意到的一些问题。这篇文章我会尽量地写简单和通俗易懂一些,主要是讲清楚相关的原理和问题,而对于一些细节和延伸阅读我会在文章最好给出相关的资源。

本文比较长,主要分成这么几个部分:基础知识、缓存的命中、缓存的一致性、相关的代码示例和延伸阅读。

因为无论你写什么样的代码都会交给CPU来执行,所以,如果你想写出性能比较高的代码,这篇文章中的技术还是应该认真学习的。

基础知识

首先,我们都知道现在的CPU多核技术,都会有几级缓存,老的CPU会有两级内存(L1和L2),新的CPU会有三级内存(L1,L2,L3 ),如下图所示:

与程序员相关的CPU缓存知识

 

其中:

再往后面就是内存,内存的后面就是硬盘。我们来看一些他们的速度:

我们可以看到,L1的速度是RAM的27倍,但是L1/L2的大小基本上也就是KB级别的,L3会是MB级别的。例如: Intel Core i7-8700K ,是一个6核的CPU,每核上的L1是64KB(数据和指令各32KB),L2 是 256K,L3有12MB(我的苹果电脑是 Intel Core i9-8950HK ,和Core i7-8700K的Cache大小一样)。

于是我们的数据就从内存向上,先到L3,再到L2,再到L1,最后到寄存器进行CPU计算。为什么会设计成三层?这里有下面几个方面的考虑:

这个世界永远是平衡的,一面变得有多光鲜,另一面也会变得有多黑暗。建立这么多级的缓存,一定就会引入其它的问题,这里有两个比较重要的问题,

尤其是第二个问题,在多核技术下,这就很像分布式的系统了,要对多个地方进行更新。

缓存的命中

在说明这两个问题之前。我们需要要解一个术语 Cache Line。缓存基本上来说就是把后面的数据加载到离自己进的地方,对于CPU来说,它是不会一个字节一个字节的加载的,因为这非常没有效率,一般来说都是要一块一块的加载的,在CPU的缓存技术中,这个术语叫“Cache Line”(有的中文编译成“缓存线”),一般来说,一个主流的CPU的Cache Line 是 64 Bytes(也有的CPU用32Bytes和128Bytes),也就是16个32位的整型。也就是说,CPU从内存中捞数据上来的最小数据单位。

比如:Cache Line是最小单位(64Bytes),所以先把Cache分布多个Cache Line,比如:L1有32KB,那么,32KB/64B = 500 个 Cache Line。

一方面,缓存需要把内存里的数据放到放进来,英文叫 CPU Associativity。Cache的数据放置的策略决定了内存中的数据块会拷贝到CPU Cache中的哪个位置,因为Cache的大小远远小于内存,所以,需要有一种地址关联的算法,能够让内存中的数据可以被映射到cache中来。这个有点像内存管理的方法。

基本上来说,我们会有如下的一些方法。

与程序员相关的CPU缓存知识

 

那么,Cache的命中率会成为程序运行性能非常关键的事,所以,了解上面的这些东西,会有利于我们知道在什么情况下有可以导致缓存的失效。

对于 N-Way 关联我们取个例子,并多说一些细节(因为后面会用到),Intel 大多数处理器的L1 Cache都是32KB,8-Way 组相联,Cache Line 是64 Bytes。于是,

为了方便索引内存地址,

如下图所示:(更多的细节可以读一下《 Cache: a place for concealment and safekeeping 》)

与程序员相关的CPU缓存知识

 

(图片来自《 Cache: a place for concealment and safekeeping 》)

这意味着:

此外,当有数据没有命中缓存的时候,CPU就会以最小为Cache Line的单元向内存更新数据。当然,CPU并不一定只是更新64Bytes,因为访问主存是在是太慢了,所以,一般都会多更新一些。好的CPU会有一些预测的技术,如果找到一种pattern的话,就会预先加载更多的内存,包括指令也可以预加载。这叫 Prefetching 技术 (参看,Wikipedia 的 Cache Prefetching 和 纽约州立大学的 Memory Prefetching )。比如,你在for-loop访问一个连续的数组,你的步长是一个固定的数,内存就可以做到prefetching。(注:指令也是以预加载的方式执行,参看本站的《 代码执行的效率 》中的第三个示例)

缓存的一致性

对于主流的CPU来说,缓存的写操作基本上是两种策略(参看本站《 缓存更新的套路 》),

为了提高写的性能,一般来说,主流的CPU(如:Intel Core i7/i9)采用的是Write Back的策略,因为直接写内存实在是太慢了。

好了,现在问题来了,如果有一个数据 x 在 CPU 第0核的缓存上被更新了,那么其它CPU核上对于这个数据 x 的值也要被更新,这就是缓存一致性的问题。(当然,对于我们上层的程序我们不用关心CPU多个核的缓存是怎么同步的,这对上层都是透明的)

一般来说,在CPU硬件上,会有两种方法来解决这个问题。

与程序员相关的CPU缓存知识

 

因为Directory协议是一个中心式的,会有性能瓶颈,而且会增加整体设计的复杂度。而Snoopy协议更像是微服务+消息通讯,所以,现在基本都是使用Snoopy的总线的设计。

这里,我想多写一些细节,因为这种微观的东西,不自然就就会更分布式系统相关联,在分布式系统中我们一般用Paxos/Raft这样的分布式一致性的算法。而在CPU的微观世界里,则不必使用这样的算法,原因是因为CPU的多个核的硬件不必考虑网络会断会延迟的问题。所以,CPU的多核心缓存间的同步的核心就是要管理好数据的状态就好了。

这里介绍几个状态协议,先从最简单的开始,MESI协议,这个协议跟那个著名的足球运动员梅西没什么关系,其主要表示缓存数据有四个状态:Modified(已修改), Exclusive(独占的),Shared(共享的),Invalid(无效的)。

这些状态的状态机如下所示:

与程序员相关的CPU缓存知识

 

下面是个示例(如果你想看一下动画演示的话,这里有一个网页( MESI Interactive Animations ),你可以进行交互操作,这个动画演示中使用的Write Through算法):

当前操作CPU0CPU1Memory说明1) CPU0 read(x)x=1 (E)x=1只有一个CPU有 x 变量,
所以,状态是 Exclusive2) CPU1 read(x)x=1 (S)x=1(S)x=1有两个CPU都读取 x 变量,
所以状态变成 Shared3) CPU0 write(x,9)x= 9 (M)x=1(I)x=1变量改变,在CPU0中状态
变成 Modified,在CPU1中
状态变成 Invalid4) 变量 x 写回内存x=9 (M)X=1(I)x=9目前的状态不变5) CPU1 read(x)x=9 (S)x=9(S)x=9变量同步到所有的Cache中,
状态回到Shared

MESI 这种协议在数据更新后,会标记其它共享的CPU缓存的数据拷贝为Invalid状态,然后当其它CPU再次read的时候,就会出现 cache misses 的问题,此时再从内存中更新数据。可见,从内存中更新数据意味着20倍速度的降低。我们能不直接从我隔壁的CPU缓存中更新?是的,这就可以增加很多速度了,但是状态控制也就变麻烦了。还需要多来一个状态:Owner(宿主),用于标记,我是更新数据的源。于是,现了 MOESI 协议

MOESI协议的状态机和演示我就不贴了,我们只需要理解MOESI协议允许 CPU Cache 间同步数据,于是也降低了对内存的操作,性能是非常大的提升,但是控制逻辑也非常复杂。

顺便说一下,与 MOESI 协议类似的一个协议是 MESIF ,其中的 F 是 Forward,同样是把更新过的数据转发给别的 CPU Cache 但是,MOESI 中的 Owner 状态 和MESIF 中的 Forward 状态有一个非常大的不一样—— Owner状态下的数据是dirty的,还没有写回内存,Forward状态下的数据是clean的,可以丢弃而不用另行通知。

需要说明的是,AMD用MOESI,Intel用MESIF。所以,F 状态主要是针对 CPU L3 Cache 设计的(前面我们说过,L3是所有CPU核心共享的)。(相关的比较可以参看 StackOverlow上这个问题的答案 )

程序性能

了解了我们上面的这些东西后,我们来看一下对于程序的影响。

示例一

首先,假设我们有一个64M长的数组,设想一下下面的两个循环:

const int LEN = 64*1024*1024;
int *arr = new int[LEN];

for (int i = 0; i < LEN; i += 2) arr[i] *= i;

for (int i = 0; i < LEN; i += 8) arr[i] *= i;

按我们的想法来看,第二个循环要比第一个循环少4倍的计算量,其应该也是要快4倍的。但实际跑下来并不是, 在我的机器上,第一个循环需要127毫秒,第二个循环则需要121毫秒,相差无几 。这里最主要的原因就是 Cache Line,因为CPU会以一个Cache Line 64Bytes最小时单位加载,也就是16个32bits的整型,所以,无论你步长是2还是8,都差不多。而后面的乘法其实是不耗CPU时间的。

示例二

我们再来看一个与缓存命中率有关的代码,我们以一定的步长 increment 来访问一个连续的数组。

for (int i = 0; i < 10000000; i++) {
    for (int j = 0; j < size; j += increment) {
        memory[j] += j;
    }
}

我们测试一下,在下表中, 表头是步长,也就是每次跳多少个整数,而纵向是这个数组可以跳几次(你可以理解为要几条Cache Line),于是表中的任何一项代表了这个数组有多少,而且步长是多少。比如:横轴是 512,纵轴是4,意思是,这个数组有 4*512 = 2048 个长度,访问时按512步长访问,也就是访问其中的这几项: [0, 512, 1024, 1536] 这四项。

表中同的项是,是循环1000万次的时间,单位是“微秒”(除以1000后是毫秒)

| count |   1    |   16  |  512  | 1024  |
------------------------------------------
|     1 |  17539 | 16726 | 15143 | 14477 |
|     2 |  15420 | 14648 | 13552 | 13343 |
|     3 |  14716 | 14463 | 15086 | 17509 |
|     4 |  18976 | 18829 | 18961 | 21645 |
|     5 |  23693 | 23436 | 74349 | 29796 |
|     6 |  23264 | 23707 | 27005 | 44103 |
|     7 |  28574 | 28979 | 33169 | 58759 |
|     8 |  33155 | 34405 | 39339 | 65182 |
|     9 |  37088 | 37788 | 49863 |156745 |
|    10 |  41543 | 42103 | 58533 |215278 |
|    11 |  47638 | 50329 | 66620 |335603 |
|    12 |  49759 | 51228 | 75087 |305075 |
|    13 |  53938 | 53924 | 77790 |366879 |
|    14 |  58422 | 59565 | 90501 |466368 |
|    15 |  62161 | 64129 | 90814 |525780 |
|    16 |  67061 | 66663 | 98734 |440558 |
|    17 |  71132 | 69753 |171203 |506631 |
|    18 |  74102 | 73130 |293947 |550920 |

我们可以看到,从[9,1024] 以后,时间显注上升。包括[17,512] 和 [18,512] 也显注上升。这是因为,我机器的 L1 Cache 是 32KB, 8 Way 的,前面说过,8 Way的一个组有64个Cache Line,也就是4096个字节,而1024个整型正好是 4096 Bytes,所以,一旦过了这个界,每个步长都无法命中 L1 Cache,每次都是 Cache Miss,所以,导致访问时间一下子就上升了。而 [16, 512]也是一样的,其中的几步开始导致L1 Cache开始失效。

示例三

接下来,我们再来看个示例。下面是一个二维数组的两种遍历方式,一个逐行遍历,一个是逐列遍历,这两种方式在理论上来说,寻址和计算量都是一样的,执行时间应该也是一样的。

const int row = 1024;
const int col = 512
int matrix[row][col];

//逐行遍历
int sum_row=0;
for(int r=0; r<row; r++) {
    for(int c=0; c<col; c++){
        sum_row += matrix[r];
    }
}

//逐列遍历
int sum_col=0;
for(int c=0; c<col; c++) {
    for(int r=0; r<row; r++){
        sum_col += matrix[r];
    }
}

然而,并不是,在我的机器上,得到下面的结果。

执行时间有十几倍的差距。其中的原因,就是逐列遍历对于CPU Cache 的运作方式并不友好,所以,付出巨大的代价。

示例四

接下来,我们来看一下多核下的性能问题,参看如下的代码。两个线程在操作一个数组的两个不同的元素(无需加锁),线程循环1000万次,做加法操作。在下面的代码中,我高亮了一行,就是 p2 指针,要么是 p[1] ,或是 p[18] ,理论上来说,无论访问哪两个数组元素,都应该是一样的执行时间。

void fn (int* data) {
    for(int i = 0; i < 10*1024*1024; ++i)
        *data += rand();
}

int p[32];

int *p1 = &p[0];
int *p2 = &p[1]; // int *p2 = &p[30];

thread t1(fn, p1);
thread t2(fn, p2);

然而,并不是,在我的机器上执行下来的结果是:

这是因为 p[0] 和 p[1] 在同一条 Cache Line 上,而 p[0] 和 p[30] 则不可能在同一条Cache Line 上 ,CPU的缓冲最小的更新单位是Cache Line,所以, 这导致虽然两个线程在写不同的数据,但是因为这两个数据在同一条Cache Line上,就会导致缓存需要不断进在两个CPU的L1/L2中进行同步,从而导致了5倍的时间差异 。

示例五

接下来,我们再来看一下另外一段代码:我们想统计一下一个数组中的奇数个数,但是这个数组太大了,我们希望可以用多线程来完成,这个统计。下面的代码中,我们为每一个线程传入一个 id ,然后通过这个 id 来完成对应数组段的统计任务。这样可以加快整个处理速度。

int total_size = 16 * 1024 * 1024; //数组长度
int* test_data = new test_data[total_size]; //数组
int nthread = 6; //线程数(因为我的机器是6核的)
int result[nthread]; //收集结果的数组

void thread_func (int id) {
    result[id] = 0;
    int chunk_size = total_size / nthread + 1;
    int start = id * chunk_size;
    int end = min(start + chunk_size, total_size);

    for ( int i = start; i < end; ++i ) {
        if (test_data[i] % 2 != 0 ) ++result[id];
    }
}

然而,在执行过程中,你会发现,6个线程居然跑不过1个线程。因为根据上面的例子你知道 result[] 这个数组中的数据在一个Cache Line中,所以,所有的线程都会对这个 Cache Line 进行写操作,导致所有的线程都在不断地重新同步 result[] 所在的 Cache Line,所以,导致 6 个线程还跑不过一个线程的结果。这叫 False Sharing。

优化也很简单,使用一个线程内的变量。

void thread_func (int id) {
    result[id] = 0; 
    int chunk_size = total_size / nthread + 1;
    int start = id * chunk_size;
    int end = min(start + chunk_size, total_size);

    int c = 0; //使用临时变量,没有cache line的同步了
    for ( int i = start; i < end; ++i ) {
        if (test_data[i] % 2 != 0 ) ++c;
    }
    result[id] = c;
}

我们把两个程序分别在 1 到 32 个线程上跑一下,得出的结果画一张图如下所示:

与程序员相关的CPU缓存知识

 

上图中,我们可以看到,灰色的曲线就是第一种方法,橙色的就是第二种(用局部变量的)方法。当只有一个线程的时候,两个方法相当,而且第二种方法还略差一点,但是在线程数增加的时候的时候,你会发现,第二种方法的性能提高的非常快。直到到达6个线程的时候,开始变得稳定(前面说过,我的CPU是6核的)。而第一种方法无论加多少线程也没有办法超过第二种方法。因为第一种方法不是CPU Cache 友好的。

声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>