<返回更多

AI时代的网络安全:探索AI生成的网络攻击

2024-03-27  51CTO  
加入收藏

译者 | 晶颜

审校 | 重楼

长期以来,网络攻击一直是劳动密集型的,需要经过精心策划并投入大量的人工研究。然而,随着人工智能技术的出现,威胁行为者已经成功利用它们的能力,以非凡的效率策划攻击。这种技术转变使他们能够大规模地执行更复杂、更难以检测的攻击,甚至可以操纵机器学习算法来破坏操作或敏感数据,从而扩大其犯罪活动的影响。

恶意行为者越来越多地转向人工智能来分析和完善其攻击策略,这大大提升了攻击活动的成功率。这些人工智能驱动的攻击具有隐蔽性和不可预测性的特点,使它们能够熟练地绕过依赖于固定规则和历史攻击数据的传统安全措施。

在猎头公司海德思哲(Heidrick & Struggles)进行的《2023年全球首席信息安全官(CISO)调查报告》中,人工智能已成为未来五年最常见的重大威胁。因此,组织必须优先提高对这些人工智能网络威胁的认知,并相应地加强防御。

人工智能驱动的网络攻击特征

人工智能驱动的网络攻击通常表现出以下特征:

人工智能支持的网络攻击类型

1.高级网络钓鱼攻击

网络安全公司SlashNext最近的一份报告显示了令人震惊的统计数据:自2022年第四季度以来,恶意网络钓鱼邮件激增了1265%,凭据网络钓鱼飙升了967%。网络犯罪分子正在利用ChatGPT等生成式人工智能工具来制作高度针对性和复杂的商业电子邮件欺诈(BEC)和网络钓鱼信息。

用蹩脚的英语编写“尼日利亚王子”(Prince of Nigeria)电子邮件的日子已经成为过去。如今的网络钓鱼邮件高度逼真,甚至能够成功模仿来自可信来源的官方通信的语气和格式。威胁行为者利用人工智能来制作极具说服力的电子邮件,这对区分其真实性构成了挑战。

人工智能网络钓鱼攻击防御策略

2.高级社会工程攻击

人工智能生成的社会工程攻击涉及通过人工智能算法编造令人信服的人物角色、信息或场景,来操纵和欺骗个人。这些方法利用心理学原理来影响目标,使其透露敏感信息或采取某些行动。

人工智能生成的社会工程攻击示例包括以下几种:

人工智能社会工程攻击防御策略

3.勒索软件攻击

NCSC评估报告指出,包括勒索软件组织在内的威胁行为者已经在侦察、网络钓鱼和编码等各种网络操作中利用人工智能技术,来提升攻击速度和成功率。而且,预计这些趋势将持续到2025年以后。

人工智能勒索软件攻击防御策略

4.对抗性人工智能

逃逸攻击(Evasion Attack)和投毒攻击(Poisoning Attack)是人工智能和机器学习模型背景下的两种对抗性攻击。

对抗性人工智能防御策略

5.恶意GPT

恶意GPT涉及操纵生成式预训练模型(GPT)以达到攻击目的。利用大量数据集的定制GPT可以潜在地绕过现有的安全系统,从而加剧人工智能威胁。

知名的恶意GPT包括(但不仅限于)以下几种:

结语

人工智能引发的攻击构成了严重威胁,能够造成广泛的伤害和破坏。为了应对这些威胁,组织应该投资防御性人工智能技术,培养安全意识文化,并不断更新其防御策略。通过保持警惕和积极主动,组织可以更好地保护自身免受这种新的和不断发展的威胁影响。

原文标题:Cybersecurity in the Age of AI: Exploring AI-Generated Cyber Attacks,作者:Dilki Rathnayake

关键词:网络安全      点击(12)
声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多网络安全相关>>>