<返回更多

列式数据库ClickHouse,大宽表聚合、报表一下全搞定

2023-10-08  微信公众号  小王博客基地
加入收藏

列式数据库ClickHouse,大宽表聚合、报表一下全搞定

一、前言

现在数据库的种类也是特别的多,大致的类别包括:

每种都在各自的领域表现出色,但当涉及到大规模数据分析和复杂查询时,ClickHouse 出现在了舞台上。

ClickHouse 使用列式存储,这意味着它可以高效地执行聚合、过滤和排序操作。

「面试经常问到大宽表查询聚合怎么办,这不是解决方案来了嘛!!」

今天我们就一起来深入了解一下ClickHouse !看的人多的话,下期出实战哈!

二、ClickHouse简介

ClickHouse是一款由俄罗斯搜索引擎公司 Yandex 开发的开源列式数据库管理系统(DBMS)。发布于2016年,是使用 C++ 编程语言开发的。它的设计目标是用于高性能的大规模数据分析和查询,类似SQL语法降低开发和学习成本。

「ClickHouse 是用于实时应用程序和分析的速度最快、资源效率最高的开源数据库。」

Github的start数量已经:30.6k」

官网地址:https://clickhouse.com/

列式数据库ClickHouse,大宽表聚合、报表一下全搞定

三、OLAP

简介

说起列式数据库,就不得不说OLAP,列式型数据库天然适合OLAP场景,下面我们一起了解一下什么是OLAP!

OLAP(联机分析处理)是一种强大的数据处理分析方法,特别适用于需要深入探索大量多维数据的应用场景,如业务智能、数据仓库、销售分析、财务报告等。OLAP 技术允许用户从不同的角度、维度和层次来查看和分析数据,以发现潜在的关联、趋势和模式,从而更好地做出决策。

场景特性

为什么适合OLAP

面向列的数据库更适合 OLAP 场景:它们处理大多数查询的速度至少快 100 倍。下面详细解释了原因,但事实更容易直观地展示:

制作了一个动态图片能够直观的看到比行式数据库效率高很多!

列式数据库ClickHouse,大宽表聚合、报表一下全搞定

四、业务场景

我们单独讲业务场景的话有点单调,我们一般喜欢拿它和Elasticsearch 进行比较!

ClickHouse 和 Elasticsearch 都是用于数据存储和查询的强大工具,但它们在业务场景和使用方面有一些不同之处。

以下是 ClickHouse 和 Elasticsearch 的业务场景对比:

「ClickHouse:」

「Elasticsearch:」

五、拓展

当然我们也有列式存储,字节在 ClickHouse 架构基础上进行了升级,于 2020 年在内部启动了 ByConity 项目,并于 2023 年 1 月发布 Beta 版本,5月底正式对外开源。

ByConity官网地址:https://byconity.github.io/zh-cn/。

ByConity 是字节跳动开源的云原生数据仓库,它采用计算-存储分离的架构,支持多个关键功能特性,如「计算存储分离、弹性扩缩容、租户资源隔离和数据读写的强一致性」等。

通过利用主流的 OLAP 引擎优化,如「列存储、向量化执行、MPP 执行、查询优化」等,ByConity 可以提供「优异的读写性能」。

列式数据库ClickHouse,大宽表聚合、报表一下全搞定

ByConity

字节也在内部准备从ClickHouse 全面切换为ByConity。

我们本次了解一下ClickHouse,后面再深入学习一下ByConity!

五、总结

综上所述,ClickHouse 更适用于大规模数据分析、数据仓库、复杂查询、大宽表聚合、报表等场景,而 Elasticsearch 更适用于全文搜索、实时数据分析、日志分析和数据探索等场景。

大家根据自己的业务具体使用那个即可!

关键词:ClickHouse      点击(14)
声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多ClickHouse相关>>>