<返回更多

怎么能避免写出慢SQL?

2020-12-08    
加入收藏

我们不能等着系统上线,慢 SQL 吃光数据库资源之后,再找出慢 SQL 来改进,那样就晚了。那么,怎样才能在开发阶段尽量避免写出慢 SQL 呢?

定量认识 MySQL

一台 MySQL 数据库,大致处理能力的极限是,每秒一万条左右的简单 SQL,这里的“简单 SQL”,指的是类似于主键查询这种不需要遍历很多条记录的 SQL。根据服务器的配置高低,可能低端的服务器只能达到每秒几千条,高端的服务器可以达到每秒钟几万条,所以这里给出的一万 TPS 是中位数的经验值。考虑到正常的系统不可能只有简单 SQL,所以实际的 TPS 还要打很多折扣。

我的经验数据,一般一台 MySQL 服务器,平均每秒钟执行的 SQL 数量在几百左右,就已经是非常繁忙了,即使看起来 CPU 利用率和磁盘繁忙程度没那么高,你也需要考虑给数据库“减负”了。

另外一个重要的定量指标是,到底多慢的 SQL 才算慢 SQL。这里面这个“慢”,衡量的单位本来是执行时长,但是时长这个东西,我们在编写 SQL 的时候并不好去衡量。那我们可以用执行 SQL 查询时,需要遍历的数据行数替代时间作为衡量标准,因为查询的执行时长基本上是和遍历的数据行数正相关的

你在编写一条查询语句的时候,可以依据你要查询数据表的数据总量,估算一下这条查询大致需要遍历多少行数据:

遍历行数在千万左右,是 MySQL 查询的一个坎儿。MySQL 中单个表数据量,也要尽量控制在一千万条以下,最多不要超过二三千万这个量级。原因也很好理解,对一个千万级别的表执行查询,加上几个 WHERE 条件过滤一下,符合条件的数据最多可能在几十万或者百万量级,这还可以接受。但如果再和其他的表做一个联合查询,遍历的数据量很可能就超过千万级别了。所以,每个表的数据量最好小于千万级别。

使用索引避免全表扫描

绝大多数情况下,我们编写的查询语句,都应该使用索引,避免去遍历整张表,也就是通常说的,避免全表扫描。你在每次开发新功能,需要给数据库增加一个新的查询时,都要评估一下,是不是有索引可以支撑新的查询语句,如果有必要的话,需要新建索引来支持新增的查询。

增加索引付出的代价是,会降低数据插入、删除和更新的性能。这个也很好理解,增加了索引,在数据变化的时候,不仅要变更数据表里的数据,还要去变更每个索引。所以,对于更新频繁并且对更新性能要求较高的表,可以尽量少建索引。而对于查询较多更新较少的表,可以根据查询的业务逻辑,适当多建一些索引。

分析 SQL 执行计划

在 MySQL 中使用执行计划也非常简单,只要在你的 SQL 语句前面加上 EXPLAIN 关键字,然后执行这个查询语句就可以了。

比如有一个用户表,包含用户 ID、姓名、部门编号和状态这几个字段:

怎么能避免写出慢SQL?

 

我们希望查询某个二级部门下的所有人,查询条件就是,部门代号以 00028 开头的所有人。下面这两个 SQL,他们的查询结果是一样的,都满足要求,但是,哪个查询性能更好呢?

SELECT * FROM user WHERE left(department_code, 5) = '00028';
SELECT * FROM user WHERE department_code LIKE '00028%';

我们分别查看一下这两个 SQL 的执行计划:

怎么能避免写出慢SQL?

 

row 列:

type 列:

总结

在开发阶段,衡量一个 SQL 查询语句查询性能的手段是,估计执行 SQL 时需要遍历的数据行数。遍历行数在百万以内,可以认为是安全的 SQL,百万到千万这个量级则需要仔细评估和优化,千万级别以上则是非常危险的。为了减少慢 SQL 的可能性,每个数据表的行数最好控制在千万以内。 索引可以显著减少查询遍历数据的数量,所以提升 SQL 查询性能最有效的方式就是,让查询尽可能多的命中索引,但索引也是一把双刃剑,它在提升查询性能的同时,也会降低数据更新的性能。 对于复杂的查询,最好使用 SQL 执行计划,事先对查询做一个分析。在 SQL 执行计划的结果中,可以看到查询预估的遍历行数,命中了哪些索引。执行计划也可以很好地帮助你优化你的查询语句。

声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>