<返回更多

Redis五大经典业务问题剖析及解决方法

2023-12-18    dbaplus社群
加入收藏

一、缓存穿透

缓存穿透是指当请求的数据既不在缓存中也不存在于数据库中时,请求会直接穿透缓存层,到达数据库层。这通常是由于恶意攻击或者程序错误造成的,比如攻击者故意请求不存在的大量数据,导致缓存不命中,所有的请求都会落到数据库上,从而可能对数据库造成巨大的压力,影响其性能甚至导致崩溃通常是 thread_running 飙高。

解决方案

二、缓存雪崩

缓存雪崩是指在缓存系统中,由于大量缓存数据在同一时间过期,或者缓存服务宕机,导致所有的请求都直接落到数据库上,造成数据库瞬间承受巨大的访问压力,从而变得不稳定甚至崩溃的现象。这类似于雪崩一样,一旦发生就会导致连锁反应,导致整个系统的性能急剧下降。

解决方案

三、缓存击穿

缓存击穿指的是缓存中没有但数据库中有的数据(一般是热点数据)在缓存失效的瞬间,同时有大量并发请求这个数据点,这些请求会直接穿透缓存,全部落到数据库上,造成数据库短时间内的高压力。这与缓存穿透不同,缓存穿透是查询不存在的数据,而缓存击穿则是查询存在但是缓存刚好失效的数据。

解决方案

四、数据不一致

缓存和数据库数据不一致的问题通常是由于缓存层与数据库层之间的数据同步策略不当导致的。这可能发生在以下几种情况:

1. 写操作没有同时更新缓存与数据库。

2. 缓存过期或被删除,而数据库中的数据在此期间被修改。

3. 分布式系统中由于网络延迟或其他问题导致的数据同步延迟。

4. 数据库事务回滚,但缓存更新已经发生。

这些问题可能导致用户获取到过时的数据,影响用户体验,并可能引发更严重的数据一致性问题。

解决方案

1. 缓存更新策略

2. 数据库触发器:使用数据库触发器在数据发生变化时自动更新缓存,确保数据一致性。

3. 事务消息:通过使用支持事务的消息队列,将缓存操作和数据库操作放到同一个事务中,确保两者要么都成功,要么都失败。

4. 最终一致性:接受在某个时间窗口内缓存与数据库中的数据不一致,但是通过后台异步进程定期校对并同步数据,保证最终一致性。

5. 使用分布式缓存解决方案:选择支持一致性哈希、数据同步等特性的分布式缓存解决方案,如Redis Cluster,保证数据在多个节点之间的一致性。

6. 版本号/时间戳校验:给数据库记录添加版本号或时间戳,缓存数据时一同缓存这个版本信息,每次读取缓存数据时都检查版本或时间戳是否相符,若不符则重新从数据库加载。

7. 强制缓存过期:设置较短的缓存过期时间,确保数据定期从数据库中刷新。

五、数据并发竞争

数据并发竞争访问问题,通常指的是多个客户端或线程同时对同一数据进行读写操作时,由于没有妥善的并发控制措施导致数据出现不一致或者丢失的情况。这个问题在分布式系统和多用户系统中尤为常见,尤其是在使用像Redis这样的缓存系统时也会遇到。

出现问题的场景

解决方案

作者丨yangyidba

来源丨公众号:yangyidba(ID:yangyidba)

关键词:Redis      点击(9)
声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多Redis相关>>>