<返回更多

一文搞懂Go通道

2021-05-10  今日头条  程序员麻辣烫
加入收藏

1.简介

channel是Go语言的一大特性,基于channel有很多值得探讨的问题,如

  1. channel为什么是并发安全的?
  2. 同步通道和异步通道有啥区别?
  3. 通道为何会阻塞协程?
  4. 使用通道导致阻塞的协程是如何解除阻塞的?

要了解本质,需要进源码查看,毕竟源码之下了无秘密。

2.原理

2.1创建

channel理论上有三种,带缓冲不带缓冲nil,写法如下:

// buffered
ch := make(chan Task, 3)
// unbuffered
ch := make(chan int)
// nil
var ch chan int
复制代码

追踪make函数,会发现在builtin/builtin.go中仅有一个声明func make(t Type, size ...IntegerType) Type。真正的实现可以参考go内置函数make,简单来说在
cmd/compile/internal/gc/typecheck.go中有函数typecheck1

// The result of typecheck1 MUST be assigned back to n, e.g.
// 	n.Left = typecheck1(n.Left, top)
func typecheck1(n *Node, top int) (res *Node) {
	if enableTrace && trace {
		defer tracePrint("typecheck1", n)(&res)
	}

	switch n.Op {
	case OMAKE:
		ok |= ctxExpr
		args := n.List.Slice()
		if len(args) == 0 {
			yyerror("missing argument to make")
			n.Type = nil
			return n
		}

		n.List.Set(nil)
		l := args[0]
		l = typecheck(l, Etype)
		t := l.Type
		if t == nil {
			n.Type = nil
			return n
		}

		i := 1
		switch t.Etype {
		default:
			yyerror("cannot make type %v", t)
			n.Type = nil
			return n

		case TCHAN:
			l = nil
			if i < len(args) {
				l = args[i]
				i++
				l = typecheck(l, ctxExpr)
				l = defaultlit(l, types.Types[TINT])
				if l.Type == nil {
					n.Type = nil
					return n
				}
				if !checkmake(t, "buffer", l) {
					n.Type = nil
					return n
				}
				n.Left = l
			} else {
				n.Left = nodintconst(0)
			}
			n.Op = OMAKECHAN //对应的函数位置
		}

		if i < len(args) {
			yyerror("too many arguments to make(%v)", t)
			n.Op = OMAKE
			n.Type = nil
			return n
		}

		n.Type = t

		if (top&ctxStmt != 0) && top&(ctxCallee|ctxExpr|Etype) == 0 && ok&ctxStmt == 0 {
			if !n.Diag() {
				yyerror("%v evaluated but not used", n)
				n.SetDiag(true)
			}

			n.Type = nil
			return n
		}

		return n
	}
}
复制代码

最终真正实现位置为runtime/chan.go

func makechan(t *chantype, size int) *hchan {
   elem := t.elem

   // compiler checks this but be safe.
   if elem.size >= 1<<16 {
      throw("makechan: invalid channel element type")
   }
   if hchanSize%maxAlign != 0 || elem.align > maxAlign {
      throw("makechan: bad alignment")
   }

   mem, overflow := math.MulUintptr(elem.size, uintptr(size))
   if overflow || mem > maxAlloc-hchanSize || size < 0 {
      panic(plainError("makechan: size out of range"))
   }

   // Hchan does not contain pointers interesting for GC when elements stored in buf do not contain pointers.
   // buf points into the same allocation, elemtype is persistent.
   // SudoG's are referenced from their owning thread so they can't be collected.
   // TODO(dvyukov,rlh): Rethink when collector can move allocated objects.
   var c *hchan
   switch {
   case mem == 0:
      // Queue or element size is zero.
      c = (*hchan)(mallocgc(hchanSize, nil, true))
      // Race detector uses this location for synchronization.
      c.buf = c.raceaddr()
   case elem.kind&kindNoPointers != 0:
      // Elements do not contain pointers.
      // Allocate hchan and buf in one call.
      c = (*hchan)(mallocgc(hchanSize+mem, nil, true))
      c.buf = add(unsafe.Pointer(c), hchanSize)
   default:
      // Elements contain pointers.
      c = new(hchan)
      c.buf = mallocgc(mem, elem, true)
   }

   c.elemsize = uint16(elem.size)
   c.elemtype = elem
   c.dataqsiz = uint(size)

   if debugChan {
      print("makechan: chan=", c, "; elemsize=", elem.size, "; elemalg=", elem.alg, "; dataqsiz=", size, "n")
   }
   return c
}
复制代码

从这个函数可以看出,channel的数据结构为hchan

2.2结构

接下来我们看一下channel的数据结构,基于数据结构,可以推测出具体实现。

runtime/chan.go

type hchan struct {
	//channel队列里面总的数据量
	qcount   uint           // total data in the queue
	// 循环队列的容量,如果是非缓冲的channel就是0
	dataqsiz uint           // size of the circular queue
	// 缓冲队列,数组类型。
	buf      unsafe.Pointer // points to an array of dataqsiz elements
	// 元素占用字节的size
	elemsize uint16
	// 当前队列关闭标志位,非零表示关闭
	closed   uint32
	// 队列里面元素类型
	elemtype *_type // element type
	// 队列send索引
	sendx    uint   // send index
	// 队列索引
	recvx    uint   // receive index
	// 等待channel的G队列。
	recvq    waitq  // list of recv waiters
	// 向channel发送数据的G队列。
	sendq    waitq  // list of send waiters

	// lock protects all fields in hchan, as well as several
	// fields in sudogs blocked on this channel.
	//
	// Do not change another G's status while holding this lock
	// (in particular, do not ready a G), as this can deadlock
	// with stack shrinking.
	// 全局锁
	lock mutex
}
复制代码

通过该hchan的数据结构和makechan函数,数据结构里有几个值得说明的数据:

  1. dataqsiz表示channel的长度,如果为非缓冲队列,则值为0。通过dataqsiz实现环形队列。
  2. buf存放真正的数据
  3. sendx和recvx指在环形队列中数据入channel和出channel的位置
  4. sendq存放向channel发送数据的goroutine队列
  5. recvq存放等待获取channel数据的goroutine队列
  6. lock为全局锁

2.3Anwser

通过追查到的代码,我们可以回答最开始提出的几个问题了。

2.3.1channel为什么是并发安全的?

因为做操作之前,都会先获取全局锁,只有获取成功的才能进行操作,保证了并发安全。

2.3.2同步通道和异步通道有啥区别?

使用的底层数据结构、操作代码都是一样的,只不过dataqsiz的值不一样,一个为0,一个为正数。

2.3.3通道为何会阻塞协程?

当通道已经满了,但协程继续往通道里写入,或者通道里没有数据,但是协程从通道里获取数据时,协程会被阻塞。

实现的原理与Golang并发调度的GMP模型强相关。

写入满通道的流程

  1. 当前goroutine(G1)创建自身的一个引用(sudog),放置到hchan的sendq队列
  2. 当前goroutine(G1)会调用gopark函数,将当前协程置为waiting状态;
  3. 将M和G1绑定关系断开;
  4. scheduler会调度另外一个就绪态的goroutine与M建立绑定关系,然后M 会运行另外一个G。

读取空通道的流程

  1. 当前goroutine(G2)会创建自身的一个引用(sudog)
  2. 将代表G2的sudog存入recvq等待队列
  3. G2会调用gopark函数进入等待状态,让出OS thread,然后G2进入阻塞态

2.3.4使用通道导致阻塞的协程是如何解除阻塞的?

对于已经满的通道,当有协程G2做读操作时,会解除G1的阻塞,流程为

  1. G2调用 t:=<-ch 获取一个元素A;
  2. 从hchan的buf里面取出一个元素;
  3. 从sendq等待队列里面pop一个sudog;
  4. 将G1要写入的数据复制到buf中A的位置,然后更新buf的sendx和recvx索引值;
  5. G2调用goready(G1)将G1置为Runable状态,表示G1可以恢复运行;

对于读取空的通道,当有协程G1做写操作时,会解除G2的阻塞,流程为

  1. 将待写入的消息发送给接收的goroutine G2;
  2. G1调用goready(G2) 将G2设置成就绪状态,等待调度;

2.4实现

我们来看一下chan的具体实现

2.4.1读取数据

// chanrecv receives on channel c and writes the received data to ep.
// ep may be nil, in which case received data is ignored.
// If block == false and no elements are available, returns (false, false).
// Otherwise, if c is closed, zeros *ep and returns (true, false).
// Otherwise, fills in *ep with an element and returns (true, true).
// A non-nil ep must point to the heap or the caller's stack.
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {
   // raceenabled: don't need to check ep, as it is always on the stack
   // or is new memory allocated by reflect.

   if debugChan {
      print("chanrecv: chan=", c, "n")
   }

   if c == nil {
      if !block {
         return
      }
      gopark(nil, nil, waitReasonChanReceiveNilChan, traceEvGoStop, 2)
      throw("unreachable")
   }

   // Fast path: check for failed non-blocking operation without acquiring the lock.
   //
   // After observing that the channel is not ready for receiving, we observe that the
   // channel is not closed. Each of these observations is a single word-sized read
   // (first c.sendq.first or c.qcount, and second c.closed).
   // Because a channel cannot be reopened, the later observation of the channel
   // being not closed implies that it was also not closed at the moment of the
   // first observation. We behave as if we observed the channel at that moment
   // and report that the receive cannot proceed.
   //
   // The order of operations is important here: reversing the operations can lead to
   // incorrect behavior when racing with a close.
   if !block && (c.dataqsiz == 0 && c.sendq.first == nil ||
      c.dataqsiz > 0 && atomic.Loaduint(&c.qcount) == 0) &&
      atomic.Load(&c.closed) == 0 {
      return
   }

   var t0 int64
   if blockprofilerate > 0 {
      t0 = cputicks()
   }

   lock(&c.lock)

   if c.closed != 0 && c.qcount == 0 {
      if raceenabled {
         raceacquire(c.raceaddr())
      }
      unlock(&c.lock)
      if ep != nil {
         typedmemclr(c.elemtype, ep)
      }
      return true, false
   }

   if sg := c.sendq.dequeue(); sg != nil {
      // Found a waiting sender. If buffer is size 0, receive value
      // directly from sender. Otherwise, receive from head of queue
      // and add sender's value to the tail of the queue (both map to
      // the same buffer slot because the queue is full).
      recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
      return true, true
   }

   if c.qcount > 0 {
      // Receive directly from queue
      qp := chanbuf(c, c.recvx)
      if raceenabled {
         raceacquire(qp)
         racerelease(qp)
      }
      if ep != nil {
         typedmemmove(c.elemtype, ep, qp)
      }
      typedmemclr(c.elemtype, qp)
      c.recvx++
      if c.recvx == c.dataqsiz {
         c.recvx = 0
      }
      c.qcount--
      unlock(&c.lock)
      return true, true
   }

   if !block {
      unlock(&c.lock)
      return false, false
   }

   // no sender available: block on this channel.
   gp := getg()
   mysg := acquireSudog()
   mysg.releasetime = 0
   if t0 != 0 {
      mysg.releasetime = -1
   }
   // No stack splits between assigning elem and enqueuing mysg
   // on gp.waiting where copystack can find it.
   mysg.elem = ep
   mysg.waitlink = nil
   gp.waiting = mysg
   mysg.g = gp
   mysg.isSelect = false
   mysg.c = c
   gp.param = nil
   c.recvq.enqueue(mysg)
   goparkunlock(&c.lock, waitReasonChanReceive, traceEvGoBlockRecv, 3)

   // someone woke us up
   if mysg != gp.waiting {
      throw("G waiting list is corrupted")
   }
   gp.waiting = nil
   if mysg.releasetime > 0 {
      blockevent(mysg.releasetime-t0, 2)
   }
   closed := gp.param == nil
   gp.param = nil
   mysg.c = nil
   releaseSudog(mysg)
   return true, !closed
}
复制代码

接收channel的数据的流程如下:

CASE1:前置channel为nil的场景:

如果block为非阻塞,直接return;

如果block为阻塞,就调用gopark()阻塞当前goroutine,并抛出异常。

CASE2:channel已经被关闭且channel缓冲中没有数据了,这时直接返回success和空值;

CASE3:sender队列非空,调用 func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int)

函数处理:

1.先取channel缓冲队列的对头元素复制给receiver(也就是ep);

2.将sender队列的对头元素里面的数据复制到channel缓冲队列刚刚弹出的元素的位置,这样缓冲队列就不用移动数据了。

channel是非缓冲channel,直接调用recvDirect函数直接从sender recv元素到ep对象,这样就只用复制一次;

对于sender队列非空情况下, 有缓冲的channel的缓冲队列一定是满的:

释放channel的全局锁;

调用goready函数标记当前goroutine处于ready,可以运行的状态;

CASE4:sender队列为空,缓冲队列非空,直接取队列元素,移动头索引;

CASE5:sender队列为空、缓冲队列也没有元素且不阻塞协程,直接return (false,false);

CASE6:sender队列为空且channel的缓存队列为空,将goroutine加入recv队列,并阻塞。

2.4.2写入数据

/*
 * generic single channel send/recv
 * If block is not nil,
 * then the protocol will not
 * sleep but return if it could
 * not complete.
 *
 * sleep can wake up with g.param == nil
 * when a channel involved in the sleep has
 * been closed.  it is easiest to loop and re-run
 * the operation; we'll see that it's now closed.
 */
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
   if c == nil {
      if !block {
         return false
      }
      gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2)
      throw("unreachable")
   }

   if debugChan {
      print("chansend: chan=", c, "n")
   }

   if raceenabled {
      racereadpc(c.raceaddr(), callerpc, funcPC(chansend))
   }

   // Fast path: check for failed non-blocking operation without acquiring the lock.
   //
   // After observing that the channel is not closed, we observe that the channel is
   // not ready for sending. Each of these observations is a single word-sized read
   // (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
   // Because a closed channel cannot transition from 'ready for sending' to
   // 'not ready for sending', even if the channel is closed between the two observations,
   // they imply a moment between the two when the channel was both not yet closed
   // and not ready for sending. We behave as if we observed the channel at that moment,
   // and report that the send cannot proceed.
   //
   // It is okay if the reads are reordered here: if we observe that the channel is not
   // ready for sending and then observe that it is not closed, that implies that the
   // channel wasn't closed during the first observation.
   if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||
      (c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {
      return false
   }

   var t0 int64
   if blockprofilerate > 0 {
      t0 = cputicks()
   }

   lock(&c.lock)

   if c.closed != 0 {
      unlock(&c.lock)
      panic(plainError("send on closed channel"))
   }

   if sg := c.recvq.dequeue(); sg != nil {
      // Found a waiting receiver. We pass the value we want to send
      // directly to the receiver, bypassing the channel buffer (if any).
      send(c, sg, ep, func() { unlock(&c.lock) }, 3)
      return true
   }

   if c.qcount < c.dataqsiz {
      // Space is available in the channel buffer. Enqueue the element to send.
      qp := chanbuf(c, c.sendx)
      if raceenabled {
         raceacquire(qp)
         racerelease(qp)
      }
      typedmemmove(c.elemtype, qp, ep)
      c.sendx++
      if c.sendx == c.dataqsiz {
         c.sendx = 0
      }
      c.qcount++
      unlock(&c.lock)
      return true
   }

   if !block {
      unlock(&c.lock)
      return false
   }

   // Block on the channel. Some receiver will complete our operation for us.
   gp := getg()
   mysg := acquireSudog()
   mysg.releasetime = 0
   if t0 != 0 {
      mysg.releasetime = -1
   }
   // No stack splits between assigning elem and enqueuing mysg
   // on gp.waiting where copystack can find it.
   mysg.elem = ep
   mysg.waitlink = nil
   mysg.g = gp
   mysg.isSelect = false
   mysg.c = c
   gp.waiting = mysg
   gp.param = nil
   c.sendq.enqueue(mysg)
   goparkunlock(&c.lock, waitReasonChanSend, traceEvGoBlockSend, 3)
   // Ensure the value being sent is kept alive until the
   // receiver copies it out. The sudog has a pointer to the
   // stack object, but sudogs aren't considered as roots of the
   // stack tracer.
   KeepAlive(ep)

   // someone woke us up.
   if mysg != gp.waiting {
      throw("G waiting list is corrupted")
   }
   gp.waiting = nil
   if gp.param == nil {
      if c.closed == 0 {
         throw("chansend: spurious wakeup")
      }
      panic(plainError("send on closed channel"))
   }
   gp.param = nil
   if mysg.releasetime > 0 {
      blockevent(mysg.releasetime-t0, 2)
   }
   mysg.c = nil
   releaseSudog(mysg)
   return true
}
复制代码

向channel写入数据主要流程如下:

关闭channel

func closechan(c *hchan) {
   if c == nil {
      panic(plainError("close of nil channel"))
   }

   lock(&c.lock)
   if c.closed != 0 {
      unlock(&c.lock)
      panic(plainError("close of closed channel"))
   }

   if raceenabled {
      callerpc := getcallerpc()
      racewritepc(c.raceaddr(), callerpc, funcPC(closechan))
      racerelease(c.raceaddr())
   }

   c.closed = 1

   var glist gList

   // release all readers
   for {
      sg := c.recvq.dequeue()
      if sg == nil {
         break
      }
      if sg.elem != nil {
         typedmemclr(c.elemtype, sg.elem)
         sg.elem = nil
      }
      if sg.releasetime != 0 {
         sg.releasetime = cputicks()
      }
      gp := sg.g
      gp.param = nil
      if raceenabled {
         raceacquireg(gp, c.raceaddr())
      }
      glist.push(gp)
   }

   // release all writers (they will panic)
   for {
      sg := c.sendq.dequeue()
      if sg == nil {
         break
      }
      sg.elem = nil
      if sg.releasetime != 0 {
         sg.releasetime = cputicks()
      }
      gp := sg.g
      gp.param = nil
      if raceenabled {
         raceacquireg(gp, c.raceaddr())
      }
      glist.push(gp)
   }
   unlock(&c.lock)

   // Ready all Gs now that we've dropped the channel lock.
   for !glist.empty() {
      gp := glist.pop()
      gp.schedlink = 0
      goready(gp, 3)
   }
}
复制代码

关闭的主要流程如下所示:

总结

了解一下具体实现还是很好的,虽然在使用上不会带来变化,不过理解了内涵后,能够更加灵活地使用通道,可以更加容易的追查到问题,也能学习到高手的设计思想。

资料

  1. Golang-Channel原理解析
  2. golang对于 nil通道 close通道你所不知道的神器特性
  3. Go语言make和new关键字的区别及实现原理
  4. Go底层引用实现
  5. 图解Golang的channel底层原理
  6. go内置函数make
  7. Golang并发调度的GMP模型

最后

大家如果喜欢我的文章,可以关注我的公众号(程序员麻辣烫)

声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>