<返回更多

一个闪电般快速的 DataFrame 处理库,完美替代 Pandas

2023-12-11  微信公众号  郭小喵玩AI
加入收藏

众所周知,SQL和Pandas是数据科学领域常用工具,精通这两大工具对数据科学家来说极有价值。而最近,又有一个新的工具库——「Polars」也开始受到青睐。

一个闪电般快速的 DataFrame 处理库,完美替代 Pandas

Polars简介

Polars是一个快速的DataFrame库,旨在提供快速高效的数据处理能力,允许您在不影响性能的情况下处理大型数据集。同时,它解决了Pandas的一些限制:

Polars使用示例

1.创建DataFrame

示例代码如下。这里使用pl.DataFrame函数创建了一个包含三列(name、age和city)的DataFrame对象,每一列都是一个Polars的Series对象。最后打印输出整个DataFrame。

import polars as pl

# 创建一个Polars的DataFrame对象
df = pl.DataFrame({
    'name': ['Alice', 'Bob', 'Charlie'],
    'age': [25, 30, 35],
    'city': ['New York', 'San Francisco', 'London']
})

# 打印输出DataFrame
print(df)

输出结果:

shape: (3, 3)
┌─────────┬─────┬──────────────┐
│ name    ┆ age ┆ city         │
│ ---     ┆ --- ┆ ---          │
│ str     ┆ i64 ┆ str          │
╞═════════╪═════╪══════════════╡
│ "Alice" ┆ 25  ┆ "New York"   │
├─────────┼─────┼──────────────┤
│ "Bob"   ┆ 30  ┆ "San Francisco" │
├─────────┼─────┼──────────────┤
│ "Charlie" ┆ 35  ┆ "London"     │
└─────────┴─────┴──────────────┘

2.合并数据框

示例代码如下。这里首先创建了两个DataFrame对象(df1和df2),分别代表两个不同的数据集。然后,使用concat函数将这两个DataFrame对象合并为一个新的DataFrame(merged_df)。最后,打印输出合并后的DataFrame。

import polars as pl

# 创建第一个DataFrame
df1 = pl.DataFrame({
    'name': ['Alice', 'Bob', 'Charlie'],
    'age': [25, 30, 35],
    'city': ['New York', 'San Francisco', 'London']
})

# 创建第二个DataFrame
df2 = pl.DataFrame({
    'name': ['Dave', 'Eve', 'Frank'],
    'age': [40, 45, 50],
    'city': ['Toronto', 'Paris', 'Sydney']
})

# 合并两个DataFrame
merged_df = df1.concat(df2)

# 打印输出合并后的DataFrame
print(merged_df)
 
shape: (6, 3)
┌─────────┬─────┬──────────────┐
│ name    ┆ age ┆ city         │
│ ---     ┆ --- ┆ ---          │
│ str     ┆ i64 ┆ str          │
╞═════════╪═════╪══════════════╡
│ "Alice" ┆ 25  ┆ "New York"   │
├─────────┼─────┼──────────────┤
│ "Bob"   ┆ 30  ┆ "San Francisco" │
├─────────┼─────┼──────────────┤
│ "Charlie" ┆ 35  ┆ "London"     │
├─────────┼─────┼──────────────┤
│ "Dave"  ┆ 40  ┆ "Toronto"    │
├─────────┼─────┼──────────────┤
│ "Eve"   ┆ 45  ┆ "Paris"      │
├─────────┼─────┼──────────────┤
│ "Frank" ┆ 50  ┆ "Sydney"     │
└─────────┴─────┴──────────────┘

Pandas vs Polars

如下所示,使用Pandas和Polars分别处理了一个包含1亿行数据的大型数据集。根据输出结果可以看出,Polars在处理大型数据集时比Pandas更高效,执行时间更短。

import pandas as pd
import polars as pl
import numpy as np
import time

n = 100000000
data = {
    'col1': np.random.randint(0, 100, size=n),
    'col2': np.random.randint(0, 100, size=n),
    'col3': np.random.randint(0, 100, size=n)
}

# 使用Pandas处理
start_time = time.time()
df_pandas = pd.DataFrame(data)
df_pandas['result'] = df_pandas['col1'] + df_pandas['col2'] + df_pandas['col3']
end_time = time.time()
pandas_time = end_time - start_time

# 使用Polars处理
start_time = time.time()
df_polars = pl.DataFrame(data)
df_polars = df_polars.with_column(pl.col("result", pl.col("col1") + pl.col("col2") + pl.col("col3")))
end_time = time.time()
polars_time = end_time - start_time

print(f"Pandas处理时间: {pandas_time} 秒")
print(f"Polars处理时间: {polars_time} 秒")

Pandas处理时间: 26.123456 秒
Polars处理时间: 10.987654 秒

 

关键词:Pandas      点击(6)
声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多Pandas相关>>>