<返回更多

Python数据分析实战,小费数据集应用

2020-08-17    
加入收藏

一、数据来源

本节选用的是Python的第三方库seaborn自带的数据集,该小费数据集为餐饮行业收集的数据,其中total_bill为消费总金额、tip为小费金额、sex为顾客性别、smoker为顾客是否吸烟、day为消费的星期、time为聚餐的时间段、size为聚餐人数。

import numpy as np
from pandas import Series,DataFrame
import pandas as pd
import seaborn as sns    #导入seaborn库
tips=sns.load_dataset('tips')  #seaborn库自带的数据集
tips.head()
Python数据分析实战,小费数据集应用

 

二、问题探索

一、小费金额与消费总金额是否存在相关性?

二、性别、是否吸烟、星期几、聚餐人数和小费金额是否有一定的关联?

三、小费金额占小费总金额的百分比是否服从正态分布?

三、数据清洗

tips.shape #数据集的维度

(244,7)

共有244条数据,7列。

tips.describe() #描述统计
Python数据分析实战,小费数据集应用

 

描述统计结果如上所示。

tips.info() #查看缺失值信息
Python数据分析实战,小费数据集应用

 

此例无缺失值。

四、数据探索

tips.plot(kind='scatter',x='total_bill',y='tip') #绘制散点图
Python数据分析实战,小费数据集应用

 

由图可看出,小费金额与消费总金额存在正相关性。

import numpy as np
from pandas import Series,DataFrame
import pandas as pd
import seaborn as sns   #导入seaborn库
tips=sns.load_dataset('tips')#seaborn库自带的数据集
tips.head()

3.0896178343949052

female_tip = tips[tips['sex'] == 'Female']['tip'].mean() #女性平均消费金额female_tip

2.833448275862069

s = Series([male_tip,female_tip],index=['male','female'])
s

male 3.089618

female 2.833448

dtype: float64

s.plot(kind='bar') #男女平均小费柱状图
Python数据分析实战,小费数据集应用

 

由图可看出,女性小费金额小于男性小费金额。

tips['day'].unique() #日期的唯一值 

[Sun, Sat, Thur, Fri]

Categories (4, object): [Sun, Sat, Thur, Fri]

sun_tip = tips[tips['day'] == 'Sun']['tip'].mean()
sat_tip = tips[tips['day'] == 'Sat']['tip'].mean()
thur_tip = tips[tips['day'] == 'Thur']['tip'].mean()
fri_tip = tips[tips['day'] == 'Fri']['tip'].mean()#各个日期的平均小费值
s = Series([thur_tip,fri_tip,sat_tip,sun_tip],index=['Thur','Fri','Sat','Sun'])
s

 

Python数据分析实战,小费数据集应用

 

s.plot(kind='bar') #日期平均小费柱状图
Python数据分析实战,小费数据集应用

 

由图可看出,周六、周日的小费比周四、周五的小费高。

tips['percent_tip'] = tips['tip']/(tips['total_bill']+tips['tip'])
tips.head(10) #小费所占百分比
Python数据分析实战,小费数据集应用

 

tips['percent_tip'].hist(bins=50)#小费百分比直方图
Python数据分析实战,小费数据集应用

 

由图可看出,小费金额占小费总金额的百分比基本服从正态分布。

声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>