<返回更多

Python求解特征向量和拉普拉斯矩阵

2020-06-23    
加入收藏

学过线性代数和深度学习先关的一定知道特征向量和拉普拉斯矩阵,这两者是很多模型的基础,有着很重要的地位,那用Python要怎么实现呢?

numpy和scipy两个库中模块中都提供了线性代数的库linalg,scipy更全面些。

Python求解特征向量和拉普拉斯矩阵

 

特征值和特征向量

import scipy as sc

#返回特征值,按照升序排列,num定义返回的个数
def eignvalues(matrix, num):
    return sc.linalg.eigh(matrix, eigvalues(0, num-1))[0]

#返回特征向量
def eighvectors(matrix):
    return sc.linalg.eigh(matrix, eigvalues(0, num-1))[1]

调用实例

#创建一个对角矩阵,很容易得知它的特征值是1,2,3
matrix = sc.diag([1,2,3])

#调用特征值函数,获取最小的特征值
minValue = eighvalues(matrix, 1)

#调用特征向量函数,获取所有的特征向量
vectors = eighvectors(matrix, 3)

拉普拉斯矩阵

很多图模型中都涉及到拉普拉斯矩阵,它有三种形式,这次给出的代码是D-A(度矩阵-邻接矩阵)和第二种标准化的形式:

Python求解特征向量和拉普拉斯矩阵

 

#laplacian矩阵
import numpy as np
def unnormalized_laplacian(adj_matrix):
    # 先求度矩阵
    R = np.sum(adj_matrix, axis=1)
    degreeMatrix = np.diag(R)
    return degreeMatrix - adj_matrix
    
def normalized_laplacian(adj_matrix):
    R = np.sum(adj_matrix, axis=1)
    R_sqrt = 1/np.sqrt(R)
    D_sqrt = np.diag(R_sqrt)
    I = np.eye(adj_matrix.shape[0])
    return I - D_sqrt * adj_matrix * D_sqrt
声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>