<返回更多

方便且实用,Python内置的轻量级数据库实操

2020-05-05    
加入收藏
方便且实用,Python内置的轻量级数据库实操

 

之前我们在很多项目案例中都使用了MySQL数据库。有的同学问:MySQL安装和配置太麻烦了,老是搞不定,有没有更简便的方法?

当然有咯!

Python内置的sqlite3模块就是一个轻量级的数据库,不需要独立的服务器进程。它的数据库就是一个.db后缀的文件,可以跨平台直接访问,非常便捷。简直就是轻量级数据的首选数据库啊!

今天我们就来用Python实战操作一下sqlite3,通过本案例可以完全掌握sqlite3的常用操作。

本文主要内容:

不过,在开始前需要说明的是,虽然Python内置了sqlite3模块,但它只是用来连接数据库的接口。你仍然需要确保电脑上已经有了sqlite3这个数据库软件。

如果你是mac或者linux系统,那么恭喜你,你的电脑上默认就装有sqlite3。windows的同学得手动安装一下。

下载地址:https://www.sqlite.org/download.html

选择 Precompiled Binaries for Windows,下载预编译的二进制 zip 文件:sqlite-tools-win32-*.zip 和 sqlite-dll-win32-*.zip。

在你的电脑上创建文件夹 C:sqlite,并在此文件夹下解压上面两个压缩文件,将得到 sqlite3.def、sqlite3.dll 和 sqlite3.exe 文件。

添加 C:sqlite 到 PATH 环境变量。安装成功后,在命令提示符下,使用 sqlite3 命令,将会显示如下结果:

C:>sqlite3
SQLite version 3.7.15.2 2013-01-09 11:53:05
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite>

1. 读取数据并插入数据库

本文以TXT文件为例,进行示范操作。TXT文件为单列数据,以换行符分割,文件数量60+,数据总量5万+。

程序设计思路:自动读取每个TXT文件,再依次读取每一行并插入数据库中。

1.1 源代码

# -*- coding: utf-8 -*-
"""
Created on Fri Jan 17 15:06:42 2020

@author: liulu
"""
import sqlite3
import os
path = os.getcwd()
files = os.listdir(path)
conn = sqlite3.connect(path+'db.db')
cur = conn.cursor()
cur.execute('create table if not exists numbers (id integer primary key ,number varchar(20) NOT NULL)')
conn.commit()
i = 0
for file in files:
    if file.split('.')[-1] == 'txt':
        with open(file,'r',encoding = 'UTF-8') as f:
            next(f)
            for line in f:
                i += 1
                print("插入第", i, "条数据:")
                #print(line)
                cur.execute('insert into numbers values(?,?)',(i,line))
                conn.commit()
cur.close()
conn.close()
print('数据写入完成!共写入',i,' 条数据')

1.2 运行效果

方便且实用,Python内置的轻量级数据库实操

 

代码运行效果图

1.3 重点代码解释

1)自动获取所有TXT文件名称和路径

了解我的读者都知道,我是比较懒的,我不喜欢指定程序的路径。我写的程序都是自己找路径,自己找文件名称。感兴趣的朋友可以去我的公众号(智能演示)查看这篇文章:获取任意路径下文件名称的2种方法。

2)数据库的创建与连接

conn = sqlite3.connect(path+'db.db')

path是程序所在路径,也是TXT文件的所在路径。这行代码的意思是:如果数据库已经存在,则连接数据库;如果数据库不存在,则先创建数据库,再连接该数据库。

3)创建表

cur.execute('create table if not exists numbers (id integer primary key ,number varchar(20) NOT NULL)')

在数据库db.db 中创建表numbers,表中包含两个字段:id、number。

注意!一定不要忘了conn.commit()保存一下!不然后面的数据是插不进去的。

4)插入数据

①优化打开方式

with open(file,'r',encoding = 'UTF-8') as f:

建议使用 with 语句来打开TXT文件。这样做的好处是,当对象会在with语句结束时会自动关闭。效率更高!不易出错。

②占位符功能

cur.execute('insert into numbers values(?,?)',(i,line))

(?,?) 起到占位符功能,(i,line))中的值会按位置替换到SQL语句中。

这样就实现了数据的自动插入数据库。需要几分钟时间,请耐心等待。

方便且实用,Python内置的轻量级数据库实操

 

我们查看下db.db文件属性,可以看到存储了51216条数据的数据库文件大小只有1.13MB,可以说是很轻量的。

方便且实用,Python内置的轻量级数据库实操

 

你可以将这个数据库文件复制到任意一台电脑上,连接上数据库即可进行操作,非常方便。

 

下面就来说一下sqlite3的常用操作。

2. 数据库操作

2.1 连接数据库

import sqlite3
import os
path = os.getcwd()
files = os.listdir(path)
conn = sqlite3.connect(path+'db.db')
cur = conn.cursor()

这样就连接上了刚才的数据库。path+'db.db'是数据库的路径及文件名,你可以手动输入路径,也可以将.py文件和db.db数据库文件放在同一目录下,系统自动计算路径,这是懒人方法。

2.2 查询数据库中有哪些表

我们似乎不知道db.db这个数据库中有什么,如何才能知道这个数据库中有哪些表呢?

cur.execute("SELECT name FROM sqlite_master WHERE type='table';")
Tables=cur.fetchall()
print(Tables)
# [('numbers',)]

2.3 删除数据库中的某个表

如果需要删除数据库中的某个表,可以执行以下命令:

cur.execute("drop table tablename;")

2.4 查询某个表的结构

cur.execute("PRAGMA table_info(numbers)")
print(cur.fetchall())
# [(0, 'id', 'integer', 0, None, 1), (1, 'number', 'varchar(20)', 1, None, 0)]

2.5 查询表中前50条记录

cur.execute("SELECT * from numbers limit 0,50;")
conn.commit
data = cur.fetchall()
print(data)

2.6 查询表中所有记录

# 5.查询表中所有记录
cur.execute("SELECT * from numbers;")
data_all = cur.fetchall()
a = len(data_all)
print('共有 '+ str(a) + ' 条记录')
#print(data)

2.7 查询表中不重复记录

cur.execute("SELECT distinct number from numbers;")
data_distinct = cur.fetchall()
b = len(data_distinct)
print('共有 '+ str(b) +' 条不重复记录')
#print(data_distinct)

2.8 将老表中的不重复记录插入新表

# 创建一个新表
cur.execute('create table if not exists numbers_distinct (id integer primary key ,number varchar(20) NOT NULL)')
conn.commit()
# 插入数据
i = 0
for data in data_distinct:
    i += 1
    data = data[0]
    #print(data)
    cur.execute('insert into numbers_distinct values(?,?)',(i,data))
    conn.commit()

2.9 将特定结果写入文本文件(单列)

cur.execute("SELECT number from numbers_distinct limit 0,10;")
datas = cur.fetchall()
#print(datas)
with open('datafile1.txt','w') as f1:
    for data in datas:
        f1.write(data[0])
        f1.flush()

注意:f1.flush()操作很重要!将缓冲区的数据写入文件中,否则文本文件为空白,导致写入失败。

2.10 将特定结果写入文本文件(多列)

cur.execute("SELECT * from numbers_distinct limit 0,10;")
datas = cur.fetchall()
#print(datas)
with open('datafile2.txt','w') as f2:
    for data in datas:
        data0 = str(data[0]) # 将int类型转为str,否则write函数报错
        data = data0 + '    ' + data[1] # 在两列之间以Tab键分隔
        f2.write(data)
        f2.flush()

2.11 将特定结果写入CSV文件(多列)

写入CSV文件和写入文本文件的方法基本相同,只需要将文件后缀改为 '.csv',并将分隔符改为英文状态下逗号即可。

with open('datafile3.csv','w') as f3:
    for data in datas:
        data0 = str(data[0]) # 将int类型转为str,否则write函数报错
        data = data0 + ',' + data[1] # 在两列之间以逗号键分隔
        f3.write(data) # data是元组类型
        f3.flush() # 重要!将缓冲区的数据写入文件中

2.12 办公自动化案例

本文以:将number_distingct表中的数据,以每50个为一组,分别存入一个文本文件为例,演示以下Python结合sqlite3数据库的办公自动化的惊艳效果。

1)源代码

"""
源代码已发布到【智能演示】微信公众号,后台回复 sqlite3 可获取下载链接。
"""
for n in range(int(b/50)+1):
    if 50*n+50 < b: # b为数据记录总数
        cur.execute('SELECT number from numbers_distinct limit ?,?',(50*n,50))
        datas = cur.fetchall()
        #print(datas)
        filename = str(50*n) + '-' + str(50*n+50) + '.txt'
        print('正在写入:' + filename)
        with open(filename,'w') as f4:
            for data in datas:
                f4.write(data[0]) # data是元组类型
                f4.flush() # 重要!将缓冲区的数据写入文件中
    else:
        filename = str(50*n) + '-' + str(b) + '.txt'
        print('正在写入:' + filename)
        with open(filename,'w') as f5: # 计算最后一个文本文件名称
            cur.execute('SELECT number from numbers_distinct limit ?,?',(50*n+50,50))
            datas = cur.fetchall()
            for data in datas:
                f5.write(data[0]) # data是元组类型
                f5.flush() # 重要!将缓冲区的数据写入文件中
print('写入完成!共写入{}个TXT文件。'.format(n+1))

2)运行效果

方便且实用,Python内置的轻量级数据库实操

 

导出719个TXT文件,几秒钟就完成了。

3)重点代码解释

这个案例的重点是如何计算出每个TXT文件的名称。

我们可以计算出numbers_distinct表中共有35926条数据。

我们可以构建这样一个函数:filename = str(50*n) + '-' + str(50*n+50) + '.txt',用来计算每个导出的TXT文件名称。

但是最后一个文件的名称不能通过这个方法来构建,需要作以下简单的修改:filename = str(50*n) + '-' + str(b) + '.txt'

计算好每个TXT文件名称后,直接用write函数写入就可以了。

快来动动手试一下吧!

声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>