<返回更多

四分钟快速入门Java线程的六种状态与流转

2023-06-28  今日头条  Java码农之路
加入收藏
sendfile实现的零拷贝,I/O发生了2次用户空间与内核空间的上下文切换,以及3次数据拷贝。其中3次数据拷贝中,包括了2次DMA拷贝和1次CPU拷贝。​

1.并行与并发有什么区别?

并行和并发都是指多个任务同时执行的概念,但是它们之间有着明显的区别。

总的来说,虽然并行和并发都是多任务处理的方式,但是并行是采用多核处理器等硬件实现任务同步执行,而并发则是通过操作系统的调度算法来合理地分配系统资源,使得多个任务看上去同时执行。

2.说说什么是进程和线程?

进程和线程是操作系统中的概念,用于描述程序运行时的执行实体。

进程:一个程序在执行过程中的一个实例,每个进程都有自己独立的地址空间,也就是说它们不能直接共享内存。进程的特点包括:

线程:进程中的一个执行单元,一个进程中可以包含多个线程,这些线程共享进程的内存空间。线程的特点包括:

线程相比于进程,线程的创建和销毁开销较小,上下文切换开销也较小,因此线程是实现多任务并发的一种更加轻量级的方式。

3.说说线程有几种创建方式?

JAVA中创建线程主要有三种方式:

/**
 * 继承Thread-重写run方法
 * Created by BAILi
 */
public class BaiLiThread {
    public static void main(String[] args) {
        MyThread myThread = new MyThread();
        myThread.run();
    }
}
class MyThread extends Thread {
    @Override
    public void run() {
        System.out.println("一键三连");
    }
}
 
/**
 * 实现Runnable-重写run()方法
 * Created by BaiLi
 */
public class BaiLiRunnable {
    public static void main(String[] args) {
        MyRunnable myRunnable = new MyRunnable();
        new Thread(myRunnable).start();
    }
}
class MyRunnable implements Runnable {

    @Override
    public void run() {
        System.out.println("一键三连");
    }
}
 
/**
 * 实现Callable-重写call()方法
 * Created by BaiLi
 */
public class BaiLiCallable {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        FutureTask<String> ft = new FutureTask<String>(new MyCallable());
        Thread thread = new Thread(ft);
        thread.start();
        System.out.println(ft.get());
    }
}
class MyCallable implements Callable<String> {

    @Override
    public String call() throws Exception {
        return "一键三连";
    }
}

4.为什么调用start()方法时会执行run()方法,那怎么不直接调用run()方法?

JVM执行start方法,会先创建一个线程,由创建出来的新线程去执行thread的run方法,这才起到多线程的效果。

start()和run()的主要区别如下:

/**
 * Created by BaiLi
 */
public class BaiLiDemo {
    public static void main(String[] args) {
        Thread thread = new Thread(() -> System.out.println(Thread.currentThread().getName()+":一键三连"));
        thread.start();
        thread.run();
        thread.run();
        System.out.println(Thread.currentThread().getName()+":一键三连 + 分享");
    }
}

5.线程有哪些常用的调度方法

import java.time.LocalTime;

/**
 * Created by BaiLi
 */
public class WaitDemo {
    public static void main(String[] args) throws InterruptedException {
        Object lock = new Object();
        Thread thread1 = new Thread(() -> {
            try {
                synchronized (lock) {
                    System.out.println("线程进入永久等待"+ LocalTime.now());
                    lock.wait();
                    System.out.println("线程永久等待唤醒"+ LocalTime.now());
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }, "Thread-1");

        Thread thread2 = new Thread(() -> {
            try {
                synchronized (lock) {
                    System.out.println("线程进入超时等待"+ LocalTime.now());
                    lock.wait(5000);
                    System.out.println("线程超时等待唤醒"+ LocalTime.now());
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }, "Thread-2");

        thread1.start();
        thread2.start();
        Thread.sleep(1000);
        synchronized (lock) {
            lock.notifyAll();
        }
        thread1.join();
        thread2.join();
    }
}
 
public class YieldDemo extends Thread {
    public void run() {
        for (int i = 0; i < 5; i++) {
            System.out.println(Thread.currentThread().getName() + " is running");
            Thread.yield(); // 调用 yield 方法,让出 CPU 执行时间
        }
    }

    public static void main(String[] args) {
        YieldDemo demo = new YieldDemo();

        Thread t1 = new Thread(demo);
        Thread t2 = new Thread(demo);

        t1.start();
        t2.start();
    }
}
 
/**
 * Created by BaiLi
 */
public class InterruptedDemo extends Thread {
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName()+":当前线程中断状态_"+isInterrupted());
        if(isInterrupted()){
            if(!interrupted()){
                System.out.println(Thread.currentThread().getName()+":当前线程中断状态_"+isInterrupted());
            }
        }
    }

    public static void main(String[] args) {
        InterruptedDemo interruptedDemo = new InterruptedDemo();
        interruptedDemo.start();

        interruptedDemo.interrupt();
        System.out.println(Thread.currentThread().getName()+":当前线程中断状态_"+Thread.interrupted());
    }
}

6.线程有几种状态?

线程在自身的生命周期中, 并不是固定地处于某个状态,而是随着代码的执行在不同的状态之间进行切换,如下图:

7.什么是线程上下文切换?

线程上下文切换指的是在多线程运行时,操作系统从当前正在执行的线程中保存其上下文(包括当前线程的寄存器、程序指针、栈指针等状态信息),并将这些信息恢复到另一个等待执行的线程中,从而实现线程之间的切换。

8.线程间有哪些通信方式?

线程间通信是指在多线程编程中,各个线程之间共享信息或者协同完成某一任务的过程。常用的线程间通信方式有以下几种:

 
/**
 * 共享变量
 * 创建人:百里
 */
public class BaiLiSharedMemoryDemo {
    public static void main(String[] args) {
        ArrayList<Integer> integers = new ArrayList<>();
        Thread producerThread = new Thread(() -> {
            for (int i = 0; i < 5; i++) {
                synchronized (integers) {
                    integers.add(i);
                    System.out.println(Thread.currentThread().getName() + "_Producer:" + i);
                }
                try {
                    Thread.sleep(2000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "ProducerThread");

        Thread consumeThread = new Thread(() -> {
            while (true) {
                synchronized (integers) {
                    if (!integers.isEmpty()) {
                        Integer integer = integers.remove(0);
                        System.out.println(Thread.currentThread().getName() + "_Consume:" + integer);
                    }
                }
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "ConsumeThread");
        producerThread.start();
        consumeThread.start();
    }
}
 
/**
 * 管道通信模式
 * 创建人:百里
 */
public class BaiLiPipedStreamDemo {
    public static void main(String[] args) throws IOException {
        //输出管道
        PipedOutputStream pipedOutputStream = new PipedOutputStream();
        //输入管道
        PipedInputStream pipedInputStream = new PipedInputStream();

        pipedInputStream.connect(pipedOutputStream);

        Thread producerThread = new Thread(() -> {
            try {
                for (int i = 0; i < 5; i++) {
                    pipedOutputStream.write(i);
                    System.out.println(Thread.currentThread().getName() + "_Produce: " + i);
                    Thread.sleep(2000);
                }
                pipedOutputStream.close();
            } catch (IOException | InterruptedException e) {
                e.printStackTrace();
            }
        }, "ProducerThread");

        Thread consumeThread = new Thread(() -> {
            try {
                for (int i = 0; i < 5; i++) {
                    while (true) {
                        int read = pipedInputStream.read();
                        if (read != -1) {
                            System.out.println(Thread.currentThread().getName() + "_Consume: " + read);
                        } else {
                            break;
                        }
                        Thread.sleep(1000);
                    }
                }
                pipedInputStream.close();
            } catch (IOException | InterruptedException e) {
                e.printStackTrace();
            }
        }, "ConsumeThread");

        producerThread.start();
        consumeThread.start();
    }
}
 
/**
 * 信号量
 * 创建人:百里
 */
public class BaiLiSemaphoreDemo {
    public static void main(String[] args) {
        // 实例化一个信号量对象,初始值为 0
        Semaphore semaphore = new Semaphore(0);

        // 创建生产者线程
        Thread producerThread = new Thread(() -> {
            try {
                for (int i = 0; i < 5; i++) {
                    System.out.println(Thread.currentThread().getName() + "_Producer:" + i);
                    semaphore.release(); // 把信号量的计数器加 1
                    Thread.sleep(1000); //模拟停顿
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }, "ProducerThread");

        // 创建消费者线程
        Thread consumeThread = new Thread(() -> {
            try {
                for (int i = 0; i < 5; i++) {
                    semaphore.acquire(); // 请求占有信号量,如果计数器不为 0,计数器减 1,否则线程阻塞等待
                    System.out.println(Thread.currentThread().getName() + "_Consume:" + i);
                    Thread.sleep(1000); //模拟停顿
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }, "ConsumeThread");

        producerThread.start();
        consumeThread.start();
    }
}
 
/**
 * 条件变量|可重入锁
 * 创建人:百里
 */
public class BaiLIConditionDemo {
    public static void main(String[] args) {
        // 实例化一个可重入锁对象
        ReentrantLock lock = new ReentrantLock();
        // 获取该锁对象的条件变量
        Condition condition = lock.newCondition();

        // 创建生产者线程
        Thread producerThread = new Thread(() -> {
            try {
                lock.lock(); // 获取锁对象
                for (int i = 1; i <= 5; i++) {
                    System.out.println(Thread.currentThread().getName() + " produce: " + i);
                    condition.signal(); // 唤醒处于等待状态下的消费者线程
                    condition.await(); // 使当前线程处于等待状态,并释放锁对象
                    Thread.sleep(1000);
                }
                condition.signal(); // 避免消费者线程一直等待
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock(); // 释放锁对象
            }
        }, "producer");

        // 创建消费者线程
        Thread consumerThread = new Thread(() -> {
            try {
                lock.lock(); // 获取锁对象
                for (int i = 1; i <= 5; i++) {
                    System.out.println(Thread.currentThread().getName() + " consume: " + i);
                    condition.signal(); // 唤醒处于等待状态下的生产者线程
                    condition.await(); // 使当前线程处于等待状态,并释放锁对象
                    Thread.sleep(1000);
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock(); // 释放锁对象
            }
        }, "consumer");

        // 启动生产者和消费者线程
        producerThread.start();
        consumerThread.start();
    }
}

9.ThreadLocal是什么?

ThreadLocal也就是线程本地变量。如果你创建了一个ThreadLocal变量,那么访问这个变量的每个线程都会有这个变量的一个本地拷贝,多个线程操作这个变量的时候,实际是操作自己本地内存里面的变量,从而起到线程隔离的作用,避免了线程安全问题。

ThreadLocal是整个线程的全局变量,不是整个程序的全局变量。

/**
 * ThreadLocal
 * 创建人:百里
 */
public class BaiLiThreadLocalDemo {
    //创建一个静态的threadLocal变量,被所有线程共享
    static ThreadLocal<Integer> threadLocal = new ThreadLocal<>();

    public static void main(String[] args) throws InterruptedException {
        Thread thread1 = new Thread(() -> {
            System.out.println(threadLocal.get());
            threadLocal.set(0);
            System.out.println(threadLocal.get());
        },"Thread-1");

        Thread thread2 = new Thread(() -> {
            System.out.println(threadLocal.get());
            threadLocal.set(1);
            System.out.println(threadLocal.get());
        },"Thread-2");

        thread1.start();
        thread1.join();
        thread2.start();
        thread2.join();
    }
}

10.ThreadLocal怎么实现?

实现方式观察ThreadLocal的set方法:

public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

ThreadLocalMap getMap(Thread t) {
    return t.threadLocals;
}

ThreadLocal.ThreadLocalMap threadLocals = null;

static class Entry extends WeakReference<ThreadLocal<?>> {
    Object value;

    Entry(ThreadLocal<?> k, Object v) {
        super(k);
        value = v;
    }
}

11.ThreadLocal内存泄露是怎么回事?

如果在线程池中使用ThreadLocal会造成内存泄漏,因为当ThreadLocal对象使用完之后,应该要把设置的key,value,也就是Entry对象进行回收,但线程池中的线程不会回收,而线程对象是通过强引用指向ThreadLocalMap,ThreadLocalMap也是通过强引用指向Entry对象,线程不被回收,Entry对象也就不会被回收,从而出现内存泄漏。

解决办法是在使用了ThreadLocal对象之后,手动调用ThreadLocal的remove方法,手动清除Entry对象。

package communication;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

/**
 * 创建人:百里
 */
public class BaiLiThreadLocalMemoryLeakDemo {
    private static final ThreadLocal<byte[]> threadLocal = new ThreadLocal<byte[]>();

    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newFixedThreadPool(5);
        for (int i = 0; i < 100; i++) {
            executorService.execute(() -> {
                byte[] data = new byte[50240 * 10240];
                threadLocal.set(data);
                // 不调用 remove 方法,会导致内存泄漏
                //threadLocal.remove();
            });
        }
        executorService.shutdown();
        executorService.awaitTermination(1, TimeUnit.MINUTES);
    }
}

12.ThreadLocalMap的结构

ThreadLocalMap虽然被称为Map,但是其实它是没有实现Map接口的,不过结构还是和HashMap比较类似的,主要关注的是两个要素:元素数组和散列方法。

private Entry[] table;
int i = key.threadLocalHashCode & (table.length - 1);

补充一点每创建一个ThreadLocal对象,它就会新增0x61c88647,这个值很特殊,它是斐波那契数也叫黄金分割数。这样带来的好处就是hash分布非常均匀。

private static final int HASH_INCREMENT = 0x61c88647;

private static int nextHashCode() {
    return nextHashCode.getAndAdd(HASH_INCREMENT);
}

13.ThreadLocalMap怎么解决Hash冲突的?

我们可能都知道HashMap使用了链表来解决冲突,也就是所谓的链地址法。

ThreadLocalMap内部使用的是开放地址法来解决 Hash冲突的问题。具体来说,当发生Hash冲突时,ThreadLocalMap会将当前插入的元素从冲突位置开始依次往后遍历,直到找到一个空闲的位置,然后把该元素放在这个空闲位置。这样即使出现了Hash冲突,不会影响到已经插入的元素,而只是会影响到新的插入操作。

查找的时候,先根据ThreadLocal对象的hash值找到对应的位置,然后比较该槽位Entry对象中的key是否和get的key一致,如果不一致就依次往后查找。

14.ThreadLocalMap扩容机制

ThreadLocalMap 的扩容机制和 HashMap 类似,也是在元素数量达到阈值(默认为数组长度的 2/3)时进行扩容。具体来说,在 set() 方法中,如果当前元素数量已经达到了阈值,就会调用 rehash() 方法,rehash()会先去清理过期的Entry,然后还要根据条件判断size >= threshold - threshold / 4 也就是size >= threshold * 3/4来决定是否需要扩容:

private void rehash() {
    //清理过期Entry
    expungeStaleEntries();

    //扩容
    if (size >= threshold - threshold / 4)
        resize();
}

//清理过期Entry
private void expungeStaleEntries() {
    Entry[] tab = table;
    int len = tab.length;
    for (int j = 0; j < len; j++) {
        Entry e = tab[j];
        if (e != null && e.get() == null)
            expungeStaleEntry(j);
    }
}

发现需要扩容时调用resize()方法,resize()方法首先将数组长度翻倍,然后创建一个新的数组newTab。接着遍历旧数组oldTab中的所有元素,散列方法重新计算位置,开放地址解决冲突,然后放到新的newTab,遍历完成之后,oldTab中所有的entry数据都已经放入到newTab中了,然后table引用指向newTab.

需要注意的是,新数组的长度始终是2的整数次幂,并且扩容后新数组的长度始终大于旧数组的长度。这是为了保证哈希函数计算出的位置在新数组中仍然有效。

private void resize() {
    Entry[] oldTab = table;
    int oldLen = oldTab.length;
    int newLen = oldLen * 2;
    Entry[] newTab = new Entry[newLen];
    int count = 0;
    for (int j = 0; j < oldLen; ++j) {
        Entry e = oldTab[j];
        if (e != null) {
            ThreadLocal<?> k = e.get();
            if (k == null) {
                e.value = null; // Help the GC
            } else {
                int h = k.threadLocalHashCode & (newLen - 1);
                while (newTab[h] != null)
                    h = nextIndex(h, newLen);
                newTab[h] = e;
                count++;
            }
        }
    }

    setThreshold(newLen);
    size = count;
    table = newTab;
}

15.ThreadLocal怎么进行父子线程通信

在Java多线程编程中,父子线程之间的数据传递和共享问题一直是一个非常重要的议题。如果不处理好数据的传递和共享,会导致多线程程序的性能下降或者出现线程安全问题。ThreadLocal是Java提供的一种解决方案,可以非常好地解决父子线程数据共享和传递的问题。

那么它是如何实现通信的了?在Thread类中存在InheritableThreadLocal变量,简单的说就是使用InheritableThreadLocal来进行传递,当父线程的InheritableThreadLocal不为空时,就会将这个值传到当前子线程的InheritableThreadLocal。

/**
 * ThreadLocal父子线程通信
 * 创建人:百里
 */
public class BaiLiInheritableThreadLocalDemo {
    public static void main(String[] args) throws Exception {
        ThreadLocal threadLocal = new ThreadLocal<>();
        threadLocal.set("threadLocal");

        ThreadLocal inheritableThreadLocal = new InheritableThreadLocal();
        inheritableThreadLocal.set("分享 + inheritableThreadLocal");

        Thread t = new Thread(() -> {
            System.out.println("一键三连 + " + threadLocal.get());
            System.out.println("一键三连 + " + inheritableThreadLocal.get());
        });
        t.start();
    }
}

16.说一下你对Java内存模型(JMM)的理解?

Java 内存模型(Java Memory Model)是一种规范,用于描述 Java 虚拟机(JVM)中多线程情况下,线程之间如何协同工作,如何共享数据,并保证多线程的操作在各个线程之间的可见性、有序性和原子性。

具体定义如下:

Java内存模型的抽象图:

在这个抽象的内存模型中,在两个线程之间的通信(共享变量状态变更)时,会进行如下两个步骤:

17.说说你对原子性、可见性、有序性的理解?

原子性、有序性、可见性是并发编程中非常重要的基础概念,JMM的很多技术都是围绕着这三大特性展开。

线程切换会带来原子性问题,示例:

int count = 0; //1
count++;       //2
int a = count; //3

上面展示语句中,除了语句1是原子操作,其它两个语句都不是原子性操作,下面我们来分析一下语句2

其实语句2在执行的时候,包含三个指令操作

对于上面的三条指令来说,如果线程 A 在指令 1 执行完后做线程切换,线程 A 和线程 B 按照下图的序列执行,那么我们会发现两个线程都执行了 count+=1 的操作,但是得到的结果不是我们期望的 2,而是 1。

原子性、可见性、有序性都应该怎么保证呢?

18.说说什么是指令重排?

在不影响单线程程序执行结果的前提下,计算机为了最大限度的发挥机器性能,对机器指令进行重排序优化。

从Java源代码到最终实际执行的指令序列,会分别经历下面3种重排序:

以双重校验锁单例模式为例子,Singleton instance=new Singleton();对应的JVM指令分为三步:分配内存空间-->初始化对象--->对象指向分配的内存空间,但是经过了编译器的指令重排序,第二步和第三步就可能会重排序。

JMM属于语言级的内存模型,它确保在不同的编译器和不同的处理器平台之上,通过禁止特定类型的编译器重排序和指令级重排序,为程序员提供一致的内存可见性保证。

19.指令重排有限制吗?hAppens-before了解吗?

指令重排也是有一些限制的,有两个规则happens-before和as-if-serial来约束。

happens-before的定义:

happens-before的六大规则:

/**
 * 顺序性规则
 * 顺序执行是针对代码逻辑而言的,在实际执行的时候发生指令重排序但是并没有改变源代码的逻辑。
 * @author 百里
 */
public class BaiLiHappenBeforeDemo {
    public static void main(String[] args) {
        double pi = 3.14; // A
        double r = 1.0; // B
        double area = pi * r * r; // C
        System.out.println(area);
    }
}

import java.util.concurrent.locks.ReentrantLock;

/**
 * 重排锁的话,会导致逻辑改变。
 * @author 百里
 */
public class BaiLiHappenBeforeLockDemo {
    public static void main(String[] args) {
        ReentrantLock reentrantLock = new ReentrantLock();
        reentrantLock.lock();
        // TODO 
        reentrantLock.unlock();
        
        reentrantLock.lock();
        // TODO
        reentrantLock.unlock();
    }
}

从图中,我们可以看到:

这意味着什么呢?如果线程 B 读到了“v=true”,那么线程A设置的“x=42”对线程B是可见的。也就是说,线程B能看到“x == 42“。

/**
 * 传递性规则
 * @author 百里
 */
public class BaiLiHappenBeforeVolatileDemo {
    int x = 0;
    volatile boolean v = false;
    public void writer() {
        x = 42;
        v = true;
    }
    public void reader() {
        if (v == true) {
            System.out.println(x);
        }
    }
}

我们可以理解为:线程A启动线程B之后,线程B能够看到线程A在启动线程B之前的操作。

在Java语言里面,Happens-Before的语义本质上是一种可见性,A Happens-Before B 意味着A事件对B事件来说是可见的,并且无论A事件和B事件是否发生在同一个线程里。

20.as-if-serial又是什么?单线程的程序一定是顺序的吗?

as-if-serial是指无论如何重排序都不会影响单线程程序的执行结果。这个原则的核心思想是编译器和处理器等各个层面的优化,不能改变程序执行的意义。

A和C之间存在数据依赖关系,同时B和C之间也存在数据依赖关系。因此在最终执行的指令序列中,C不能被重排序到A和B的前面(C排到A和B的前面,程序的结果将会被改变)。但A和B之间没有数据依赖关系,编译器和处理器可以重排序A和B之间的执行顺序。

所以最终,程序可能会有两种执行顺序:

21.volatile实现原理了解吗?

volatile有两个作用,保证可见性和有序性。

可见性:当一个变量被声明为 volatile 时,它会告诉编译器和CPU将该变量存储在主内存中,而不是线程的本地内存中。即每个线程读取的都是主内存中最新的值,避免了多线程并发下的数据不一致问题。

有序性:重排序可以分为编译器重排序和处理器重排序,valatile保证有序性,就是通过分别限制这两种类型的重排序。

为了实现volatile的内存语义,编译器在生成字节码时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。

  1. 在每个volatile写操作的前面插入一个StoreStore屏障
  2. 在每个volatile写操作的后面插入一个StoreLoad屏障
  3. 在每个volatile读操作的后面插入一个LoadLoad屏障
  4. 在每个volatile读操作的后面插入一个LoadStore屏障

22.synchronized用过吗?怎么使用?

synchronized经常用的,用来保证代码的原子性。

synchronized主要有三种用法:

注意事项:

23.synchronized的实现原理?

我们使用synchronized的时候,发现不用自己去lock和unlock,是因为JVM帮我们把这个事情做了。

  1. synchronized修饰代码块时,JVM采用monitorenter、monitorexit两个指令来实现同步,monitorenter 指令指向同步代码块的开始位置, monitorexit 指令则指向同步代码块的结束位置。

/**
 * @author 百里
 */
public class BaiLiSyncDemo {
    public void main(String[] args) {
        synchronized (this) {
            int a = 1;
        }
    }
}
 
public void main(java.lang.String[]);
    descriptor: ([Ljava/lang/String;)V
    flags: ACC_PUBLIC
    Code:
      stack=2, locals=5, args_size=2
         0: aload_0
         1: dup
         2: astore_2
         3: monitorenter
         4: iconst_1
         5: istore_3
         6: aload_2
         7: monitorexit
         8: goto          18
        11: astore        4
        13: aload_2
        14: monitorexit
        15: aload         4
        17: athrow
        18: return
  1. synchronized修饰同步方法时,JVM采用ACC_SYNCHRONIZED标记符来实现同步,这个标识指明了该方法是一个同步方法。同样可以写段代码反编译看一下。

/**
 * @author 百里
 */
public class BaiLiSyncDemo {
    public synchronized void main(String[] args) {
        int a = 1;
    }
}

synchronized锁住的是什么呢?

实例对象结构里有对象头,对象头里面有一块结构叫Mark word,Mark Word指针指向了monitor。

所谓的Monitor其实是一种同步机制,我们可以称为内部锁或者Monitor锁。

monitorenter、monitorexit或者ACC_SYNCHRONIZED都是基于Monitor实现的。

反编译class文件方法:

反编译一段synchronized修饰代码块代码,javap -c -s -v -l ***.class,可以看到相应的字节码指令。

24.synchronized的可见性,有序性,可重入性是怎么实现的?

synchronized怎么保证可见性?

synchronized怎么保证有序性?

synchronized同步的代码块,具有排他性,一次只能被一个线程拥有,所以synchronized保证同一时刻,代码是单线程执行的。

因为as-if-serial语义的存在,单线程的程序能保证最终结果是有序的,但是不保证不会指令重排。

所以synchronized保证的有序是执行结果的有序性,而不是防止指令重排的有序性。

synchronized怎么实现可重入的?

synchronized 是可重入锁,也就是说,允许一个线程二次请求自己持有对象锁的临界资源,这种情况称为可重入锁。

之所以是可重入的。是因为 synchronized 锁对象有个计数器,当一个线程请求成功后,JVM会记下持有锁的线程,并将计数器计为1。此时其他线程请求该锁,则必须等待。而该持有锁的线程如果再次请求这个锁,就可以再次拿到这个锁,同时计数器会递增。

当线程执行完毕后,计数器会递减,直到计数器为0才释放该锁。

25.说说synchronized和ReentrantLock的区别

可以从锁的实现、性能、功能特点等几个维度去回答这个问题:

下面的表格列出了两种锁之间的区别:

26.ReentrantLock实现原理?

ReentrantLock是一种可重入的排它锁,主要用来解决多线程对共享资源竞争的问题;它提供了比synchronized关键字更加灵活的锁机制。其实现原理主要涉及以下三个方面:

ReentrantLock内部维护了一个Sync对象(AbstractQueuedSynchronizer类的子类),Sync持有锁、等待队列等状态信息,实际上 ReentrantLock的大部分功能都是由Sync来实现的。

当一个线程调用ReentrantLock的lock()方法时,会先尝试CAS操作获取锁,如果成功则返回;否则,线程会被放入等待队列中,等待唤醒重新尝试获取锁。

如果一个线程已经持有了锁,那么它可以重入这个锁,即继续获取该锁而不会被阻塞。ReentrantLock通过维护一个计数器来实现重入锁功能,每次重入计数器加1,每次释放锁计数器减1,当计数器为0时,锁被释放。

当一个线程调用ReentrantLock的unlock()方法时,会将计数器减1,如果计数器变为了0,则锁被完全释放。如果计数器还大于0,则表示有其他线程正在等待该锁,此时会唤醒等待队列中的一个线程来获取锁。

总结:

ReentrantLock的实现原理主要是基于CAS操作和等待队列来实现。它通过Sync对象来维护锁的状态,支持重入锁和公平锁等特性,提供了比synchronized更加灵活的锁机制,是Java并发编程中常用的同步工具之一。

27.ReentrantLock怎么实现公平锁的?

ReentrantLock可以通过构造函数的参数来控制锁的公平性,如果传入 true,就表示该锁是公平的;如果传入 false,就表示该锁是不公平的。

new ReentrantLock()构造函数默认创建的是非公平锁 NonfairSync

同时也可以在创建锁构造函数中传入具体参数创建公平锁 FairSync

FairSync、NonfairSync 代表公平锁和非公平锁,两者都是 ReentrantLock 静态内部类,只不过实现不同锁语义。

非公平锁和公平锁的区别:

28.什么是CAS?

CAS叫做CompareAndSwap,比较并交换,主要是通过处理器的指令来保证操作的原子性的。

CAS 操作包含三个参数:共享变量的内存地址(V)、预期原值(A)和新值(B),当且仅当内存地址 V 的值等于 A 时,才将 V 的值修改为 B;否则,不会执行任何操作。

在多线程场景下,使用 CAS 操作可以确保多个线程同时修改某个变量时,只有一个线程能够成功修改。其他线程需要重试或者等待。这样就避免了传统锁机制中的锁竞争和死锁等问题,提高了系统的并发性能。

29.CAS存在什么问题?如何解决?

CAS的经典三大问题:

ABA问题

ABA 问题是指一个变量从A变成B,再从B变成A,这样的操作序列可能会被CAS操作误判为未被其他线程修改过。例如线程A读取了某个变量的值为 A,然后被挂起,线程B修改了这个变量的值为B,然后又修改回了A,此时线程A恢复执行,进行CAS操作,此时仍然可以成功,因为此时变量的值还是A。

怎么解决ABA问题?

每次修改变量,都在这个变量的版本号上加1,这样,刚刚A->B->A,虽然A的值没变,但是它的版本号已经变了,再判断版本号就会发现此时的A已经被改过了。

比如使用JDK5中的AtomicStampedReference类或JDK8中的LongAdder类。这些原子类型不仅包含数据本身,还包含一个版本号,每次进行操作时都会更新版本号,只有当版本号和期望值都相等时才能执行更新,这样可以避免 ABA 问题的影响。

循环性能开销

自旋CAS,如果一直循环执行,一直不成功,会给CPU带来非常大的执行开销。

怎么解决循环性能开销问题?

可以使用自适应自旋锁,即在多次操作失败后逐渐加长自旋时间或者放弃自旋锁转为阻塞锁;

只能保证一个变量的原子操作

CAS 保证的是对一个变量执行操作的原子性,如果需要对多个变量进行复合操作,CAS 操作就无法保证整个操作的原子性。

怎么解决只能保证一个变量的原子操作问题?

30.Java多线程中如何保证i++的结果正确

这里使用 AtomicInteger 类来保证 i++ 操作的原子性。

这里使用 synchronized 方法来保证 increment() 方法的原子性,从而保证 i++ 操作的结果正确。

这里使用 ReentrantLock 类的 lock() 和 unlock() 方法来保护 i++操作的原子性。

31.AtomicInteger的原理是什么?

一句话概括:使用CAS实现。

在AtomicInteger中,CAS操作的流程如下:

  1. 调用 incrementAndGet()方法,该方法会通过调用unsafe.getAndAddInt()方法,获取当前 AtomicInteger对象的值val
  2. 将 val + 1 得到新的值 next

  1. 使用 unsafe.compareAndSwapInt() 方法进行 CAS 操作,将对象中当前值与预期值(步骤1中获取的val)进行比较,如果相等,则将 next赋值给val;否则返回 false
  2. 如果CAS操作返回false,说明有其他线程已经修改了AtomicInteger对象的值,需要重新执行步骤 1

总结:

在 CAS 操作中,由于只有一个线程可以成功修改共享变量的值,因此可以保证操作的原子性,即多线程同时修改AtomicInteger变量时也不会出现竞态条件。这样就可以在多线程环境下安全地对AtomicInteger进行整型变量操作。其它的原子操作类基本都是大同小异。

32.什么是线程死锁?我们该如何避免线程死锁?

死锁是指两个或两个以上的线程在执行过程中,因争夺资源而造成的互相等待的现象,在无外力作用的情况下,这些线程会一直相互等待而无法继续运行下去。

那么为什么会产生死锁呢?死锁的产生必须具备以下四个条件:

该如何避免死锁呢?答案是至少破坏死锁发生的一个条件。

33.如何排查死锁问题

可以使用jdk自带的命令行工具排查:

  1. 使用jps查找运行的Java进程:jps -l
  2. 使用jstack查看线程堆栈信息:jstack -l 进程id

基本就可以看到死锁的信息。

还可以利用图形化工具,比如JConsole(JConsole工具在JDK的bin目录中)。出现线程死锁以后,点击JConsole线程面板的检测到死锁按钮,将会看到线程的死锁信息。

演示样例如下:

package lock;

/**
 * @author 百里
 */
public class BaiLiDeadLock {

    private static Object lock1 = new Object();
    private static Object lock2 = new Object();

    public static void main(String[] args) {
        Thread thread1 = new Thread(() -> {
            synchronized (lock1) {
                System.out.println("Thread-1获取了锁1");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                synchronized (lock2) {
                    System.out.println("Thread-1尝试获取锁2");
                }
            }
        });

        Thread thread2 = new Thread(() -> {
            synchronized (lock2) {
                System.out.println("Thread-2获取了锁2");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                synchronized (lock1) {
                    System.out.println("Thread-2尝试获取锁1");
                }
            }
        });
        thread1.start();
        thread2.start();
        try {
            thread1.join();
            thread2.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

1.新建连接,找到相应的线程,点击连接

2.选择线程标签,点击检测死锁。查看死锁线程信息

34.什么是线程池?

线程池是一种用于管理和复用线程的机制,它提供了一种执行大量异步任务的方式,并且可以在多个任务之间合理地分配和管理系统资源。

线程池的主要优点包括:

35.简单说一下线程池的工作流程

用一个通俗的比喻:

有一个银行营业厅,总共有六个窗口,现在有三个窗口坐着三个营业员小姐姐在营业。小天去办业务,可能会遇到什么情况呢?

  1. 小天发现有空闲的窗口,直接去找小姐姐办理业务。

  1. 小天发现没有空闲的窗口,就在排队区排队等。

  1. 小天发现没有空闲的窗口,等待区也满了,经理一看,就让休息的营业员小姐姐赶紧回来上班,等待区号靠前的赶紧去新窗口办,小天去排队区排队。小姐姐比较辛苦,假如一段时间发现他们可以不用接着营业,经理就让她们接着休息。

  1. 小天一看,六个窗口都满了,等待区也没位置了。小天就开始投诉急了,要闹,经理赶紧出来了,经理该怎么办呢?

  1. 我们银行系统已经瘫痪
  2. 谁叫你来办的你找谁去
  3. 看你比较急,去队里加个塞
  4. 今天没办法,不行你看改一天

上面的这个流程几乎就跟JDK线程池的大致流程类似。

  1. 营业中的 3个窗口对应核心线程池数:corePoolSize
  2. 总的营业窗口数6对应:maximumPoolSize
  3. 打开的临时窗口在多少时间内无人办理则关闭对应:unit
  4. 排队区就是等待队列:workQueue
  5. 无法办理的时候银行给出的解决方法对应:RejectedExecutionHandler
  6. threadFactory 该参数在JDK中是线程工厂,用来创建线程对象,一般不会动。

所以我们线程池的工作流程也比较好理解了:

  1. 线程池刚创建时,里面没有一个线程。任务队列是作为参数传进来的。不过,就算队列里面有任务,线程池也不会马上执行它们。
  2. 当调用 execute() 方法添加一个任务时,线程池会做如下判断:
  1. 当一个线程完成任务时,它会从队列中取下一个任务来执行。
  2. 当一个线程无事可做,超过一定的时间(keepAliveTime)时,线程池会判断,如果当前运行的线程数大于 corePoolSize,那么这个线程就被停掉。所以线程池的所有任务完成后,它最终会收缩到 corePoolSize 的大小。

36.线程池主要参数有哪些?

package pool;

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

/**
 * @author 百里
 */
public class BaiLiThreadPoolDemo {
    public static void main(String[] args) {
        //基于Executor框架实现线程池
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
                5,  //corePoolSize
                12,  //maximumPoolSize
                5,  //keepAliveTime
                TimeUnit.SECONDS,   //unit
                new ArrayBlockingQueue<>(5),  //workQueue
                Executors.defaultThreadFactory(),  //threadFactory
                new ThreadPoolExecutor.DiscardPolicy()  //handler
        );
        threadPoolExecutor.execute(() -> {
            System.out.println(
                    Thread.currentThread().getName() + ":点赞评论加分享"
            );
        });
    }
}

线程池有七大参数,我们重点关注corePoolSize、maximumPoolSize、workQueue、handler 可以帮助我们更好地理解和优化线程池的性能

  1. corePoolSize

此值是用来初始化线程池中核心线程数,当线程池中线程数< corePoolSize时,系统默认是添加一个任务才创建一个线程池。当线程数 = corePoolSize时,新任务会追加到workQueue中。

  1. maximumPoolSize

maximumPoolSize表示允许的最大线程数 = (非核心线程数+核心线程数),当BlockingQueue也满了,但线程池中总线程数 < maximumPoolSize时候就会再次创建新的线程。

  1. keepAliveTime

非核心线程 =(maximumPoolSize - corePoolSize ) ,非核心线程闲置下来不干活最多存活时间。

  1. unit

线程池中非核心线程保持存活的时间的单位

  1. workQueue

线程池等待队列,维护着等待执行的Runnable对象。当运行当线程数= corePoolSize时,新的任务会被添加到workQueue中,如果workQueue也满了则尝试用非核心线程执行任务,等待队列应该尽量用有界的。

  1. threadFactory

创建一个新线程时使用的工厂,可以用来设定线程名、是否为daemon线程等等。

  1. handler

corePoolSize、workQueue、maximumPoolSize都不可用的时候执行的饱和策略。

37.线程池的拒绝策略有哪些?

在线程池中,当提交的任务数量超过了线程池的最大容量,线程池就需要使用拒绝策略来处理无法处理的新任务。Java 中提供了 4 种默认的拒绝策略:

除了这些默认的策略之外,我们也可以自定义自己的拒绝策略,实现RejectedExecutionHandler接口即可。

public class CustomRejectedExecutionHandler implements RejectedExecutionHandler {
    @Override
    public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
        // 自定义的拒绝策略处理逻辑
    }
}

38.线程池有哪几种工作队列

39.线程池提交execute和submit有什么区别?

在Java中,线程池中一般有两种方法来提交任务:execute() 和 submit()

  1. execute() 用于提交不需要返回值的任务

  1. submit() 用于提交需要返回值的任务。线程池会返回一个future类型的对象,通过这个 future对象可以判断任务是否执行成功,并且可以通过future的get()方法来获取返回值

40.怎么关闭线程池?

可以通过调用线程池的shutdown或shutdownNow方法来关闭线程池。它们的原理是遍历线程池中的工作线程,然后逐个调用线程的interrupt方法来中断线程,所以无法响应中断的任务可能永远无法终止。

shutdown:将线程池状态置为shutdown,并不会立即停止:

  1. 停止接收外部submit的任务
  2. 内部正在跑的任务和队列里等待的任务,会执行完
  3. 等到第二步完成后,才真正停止

shutdownNow:将线程池状态置为stop。一般会立即停止,事实上不一定:

  1. 和shutdown()一样,先停止接收外部提交的任务
  2. 忽略队列里等待的任务
  3. 尝试将正在跑的任务interrupt中断
  4. 返回未执行的任务列表

shutdown 和shutdownnow区别如下:

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/**
 * @author 百里
 */
public class BaiLiShutdownDemo {
    public static void main(String[] args) {
        // 创建一个线程池,包含两个线程
        ExecutorService executor = Executors.newFixedThreadPool(2);

        // 提交任务到线程池
        executor.submit(() -> {
            try {
                Thread.sleep(30000);
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
            }
            System.out.println("Task 1 finished");
        });

        executor.submit(() -> {
            try {
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
            }
            System.out.println("Task 2 finished");
        });

        // 关闭线程池
        executor.shutdown();

        while (!executor.isTerminated()) {
            System.out.println("Waiting for all tasks to finish...");
            try {
                // 每500毫秒检查一次
                Thread.sleep(500);
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
            }
        }

        System.out.println("All tasks finished");
    }
}
 
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

/**
 * @author 百里
 */
public class BaiLiShutdownNowDemo {
    public static void main(String[] args) {
        // 创建一个线程池,包含两个线程
        ExecutorService executor = Executors.newFixedThreadPool(2);

        // 提交任务到线程池
        executor.submit(() -> {
            while (!Thread.interrupted()) {
                System.out.println("Task 1 running...");
            }
            System.out.println("Task 1 interrupted");
        });

        executor.submit(() -> {
            while (!Thread.interrupted()) {
                System.out.println("Task 2 running...");
            }
            System.out.println("Task 2 interrupted");
        });

        // 关闭线程池
        List<Runnable> unfinishedTasks = null;
        executor.shutdownNow();

        try {
            // 等待直到所有任务完成或超时60秒
            if (!executor.awaitTermination(60, TimeUnit.SECONDS)) {
                // 如果等待超时,则记录未完成的任务列表
                unfinishedTasks = executor.shutdownNow();
                System.out.println("Some tasks were not finished");
            }
        } catch (InterruptedException e) {
            // 如果等待过程中发生异常,则记录未完成的任务列表
            unfinishedTasks = executor.shutdownNow();
            Thread.currentThread().interrupt();
        }

        if (unfinishedTasks != null && !unfinishedTasks.isEmpty()) {
            System.out.println("Unfinished tasks: " + unfinishedTasks);
        } else {
            System.out.println("All tasks finished");
        }
    }
}

41.有哪几种常见的线程池

在Java中,常见的线程池类型主要有四种,都是通过工具类Excutors创建出来的。

需要注意阿里巴巴《Java开发手册》里禁止使用这种方式来创建线程池。

42.说一说newSingleThreadExecutor工作原理

线程池特点:

工作流程:

使用场景:

适用于串行执行任务的场景,一个任务一个任务地执行。

43.说一说newFixedThreadPool工作原理

线程池特点:

工作流程:

使用场景:

FixedThreadPool 适用于处理CPU密集型的任务,确保CPU在长期被工作线程使用的情况下,尽可能的少的分配线程,即适用执行长期的任务。

44.说一说newCachedThreadPool工作原理

线程池特点:

当提交任务的速度大于处理任务的速度时,每次提交一个任务,就必然会创建一个线程。极端情况下会创建过多的线程,耗尽 CPU 和内存资源。由于空闲 60 秒的线程会被终止,长时间保持空闲的 CachedThreadPool 不会占用任何资源。

工作流程:

使用场景:

用于并发执行大量短期的小任务。

45.说一说newScheduledThreadPool工作原理

线程池特点:

工作流程:

使用场景:

周期性执行任务的场景,需要限制线程数量的场景。

import java.util.concurrent.*;

/**
 * @author 百里
 */
public class BaiLiScheduledThreadPoolDemo {
    public static void main(String[] args) throws Exception {
        // 创建一个可以执行定时任务的线程池
        ScheduledExecutorService executorService = Executors.newScheduledThreadPool(1);

        // 调度一个定时任务,每隔 2 秒钟输出一次当前时间
        ScheduledFuture<?> scheduledFuture = executorService.scheduleAtFixedRate(() -> {
            System.out.println("Current time: " + System.currentTimeMillis());
        }, 0, 2, TimeUnit.SECONDS);

        // 主线程休眠 10 秒钟后取消任务
        Thread.sleep(10000);
        scheduledFuture.cancel(true);

        // 关闭线程池
        executorService.shutdown();
    }
}
 
import java.util.concurrent.*;

/**
 * @author 百里
 */
public class BaiLiScheduleWithFixedDelayDemo {
    public static void main(String[] args) throws Exception {
        // 创建一个可以执行定时任务的线程池
        ScheduledExecutorService executorService = Executors.newScheduledThreadPool(1);

        // 调度一个周期性任务,每次任务执行完毕后等待 2 秒钟再执行下一个任务
        executorService.scheduleWithFixedDelay(() -> {
            System.out.println("Current time: " + System.currentTimeMillis());
        }, 0, 2, TimeUnit.SECONDS);

        // 主线程休眠 10 秒钟后关闭线程池
        Thread.sleep(10000);
        executorService.shutdown();
    }
}

46.线程池异常怎么处理知道吗?

在使用线程池处理任务的时候,任务代码可能抛出RuntimeException,抛出异常后,线程池可能捕获它,也可能创建一个新的线程来代替异常的线程,我们可能无法感知任务出现了异常,因此我们需要考虑线程池异常情况。

常见的异常处理方式:

1.try-catch捕获异常

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/**
 * @author 百里
 */
public class BaiLiHandlerException implements Runnable {

    @Override
    public void run() {
        try {
            // 任务代码
            int a = 10 / 0;
        } catch (Exception e) {
            System.err.println("任务执行异常:" + e.getMessage());
        }
    }

    public static void main(String[] args) {
        ExecutorService executor = Executors.newFixedThreadPool(10);
        BaiLiHandlerException task = new BaiLiHandlerException();
        executor.execute(task);
    }
}

2.使用Thread.UncaughtExceptionHandler处理异常

import com.google.common.util.concurrent.ThreadFactoryBuilder;

import java.util.concurrent.*;

/**
 * @author 百里
 */
public class BaiLiHandlerException implements Runnable {


    @Override
    public void run() {
        // 任务代码
        int a = 10 / 0;
    }

    public static class MyUncaughtExceptionHandler implements Thread.UncaughtExceptionHandler {
        @Override
        public void uncaughtException(Thread t, Throwable e) {
            System.err.println("任务执行异常:" + e.getMessage());
        }
    }

    public static void main(String[] args) {
        BaiLiHandlerException task = new BaiLiHandlerException();
        Thread thread = new Thread(task);
        thread.setUncaughtExceptionHandler(new MyUncaughtExceptionHandler());
        thread.start();
    }
}
 

3.重写ThreadPoolExecutor.afterExcute处理异常

package exception;

import com.google.common.util.concurrent.ThreadFactoryBuilder;

import java.util.concurrent.*;

/**
 * @author 百里
 */
public class BaiLiHandlerException implements Runnable {


    @Override
    public void run() {
        // 任务代码
        int a = 10 / 0;
    }

    public static class MyThreadPoolExecutor extends ThreadPoolExecutor {
        public MyThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,
                                    BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory) {
            super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory);
        }

        @Override
        protected void afterExecute(Runnable r, Throwable t) {
            super.afterExecute(r, t);
            if (t != null) {
                System.err.println("任务执行异常:" + t.getMessage());
            }
        }
    }

    public static void main(String[] args) {
        MyThreadPoolExecutor executor = new MyThreadPoolExecutor(1, 1, 0, TimeUnit.MILLISECONDS,
                new LinkedBlockingQueue<>(), new ThreadFactoryBuilder().setNameFormat("MyThread-%d").build());
        BaiLiHandlerException task = new BaiLiHandlerException();
        executor.execute(task);

    }
}

4.使用future.get处理异常

import com.google.common.util.concurrent.ThreadFactoryBuilder;

import java.util.concurrent.*;

/**
 * @author 百里
 */
public class BaiLiHandlerException {
    public static void main(String[] args) {
        ExecutorService executor = Executors.newSingleThreadExecutor();
        Future<String> future = executor.submit(() -> {
            throw new RuntimeException("任务执行失败");
        });
        try {
            String result = future.get();
            System.out.println(result);
        } catch (ExecutionException e) {
            Throwable ex = e.getCause();
            System.out.println("捕获到异常: " + ex.getMessage());
        } catch (InterruptedException e) {
            Thread.currentThread().interrupt();
            executor.shutdownNow();
            System.out.println("线程被中断,已执行相应处理");
        }
        executor.shutdown();
    }
}

47.能说一下线程池有几种状态吗?

线程池有这几个状态:RUNNING,SHUTDOWN,STOP,TIDYING,TERMINATED

//线程池状态
private static final int RUNNING    = -1 << COUNT_BITS;
private static final int SHUTDOWN   =  0 << COUNT_BITS;
private static final int STOP       =  1 << COUNT_BITS;
private static final int TIDYING    =  2 << COUNT_BITS;
private static final int TERMINATED =  3 << COUNT_BITS;

线程池各个状态切换图:

RUNNING

SHUTDOWN

STOP

TIDYING

TERMINATED

48.单机线程池执行断电了应该怎么处理?

单机线程池是一种常见的多线程编程方式,它可以用于异步执行任务,提高应用程序的性能和并发能力。在单机线程池中,所有任务都由同一个线程处理,因此如果该线程在执行任务时突然断电,则会出现以下问题:

如果单机线程池在执行任务时突然遇到断电等异常情况,应该尽快采取以下措施:

49.NIO的原理,包括哪几个组件?

NIO(Java Non-blocking I/O)是一种 I/O 技术,其核心原理是基于事件驱动的方式进行操作。

NIO 的工作原理:基于缓冲区、通道和选择器的组合,通过高效地利用系统资源,以支持高并发和高吞吐量的数据处理。相比传统的 I/O 编程方式,Java NIO 提供了更为灵活和高效的编程方式。

NIO三大核心组件: Channel(通道)、Buffer(缓冲区)、Selector(选择器)。

Selector、Channel 和 Buffer 的关系图如下:

  1. Channel(通道):类似于传统 I/O 中的 Stream,是用于实际数据传输的组件。在 NIO 中,有多种类型的 Channel 可以使用,例如 FileChannel、SocketChannel、DatagramChannel 等,可用于文件操作、网络传输等不同场景。
  2. Buffer(缓冲区):用于存储数据的容器,可以理解为暂存需要传输的数据的地方。在 NIO 中,存在多种类型的缓冲区,如 ByteBuffer、CharBuffer、IntBuffer等。
  3. Selector(选择器):用于注册 Channel 并监听其 I/O 事件。当 Channel 准备好读或写数据时,会得到通知。Selector 可以高效地轮询多个 Channel,并且避免了使用多线程或多进程对多个 Channel 进行轮询的情况,从而减少了系统资源开销。

通俗理解NIO原理:

NIO 是可以做到用一个线程来处理多个操作的。假设有 10000 个请求过来,根据实际情况,可以分配 50 或者 100 个线程来处理。不像之前的阻塞 IO 那样,非得分配 10000 个。

50.什么是零拷贝?

零拷贝(Zero-Copy)是一种 I/O 操作优化技术,可以快速高效地将数据从文件系统移动到网络接口,而不需要将其从内核空间复制到用户空间。

传统I/O操作过程:

传统 I/O 的工作方式是,数据读取和写入是从用户空间到内核空间来回复制,而内核空间的数据是通过操作系统层面的 I/O 接口从磁盘读取或写入。代码通常如下,一般会需要两个系统调用:

read(file, tmp_buf, len);
write(socket, tmp_buf, len);

代码很简单,虽然就两行代码,但是这里面发生了不少的事情:

从流程图可以看出,传统IO的读写流程,包括了4次上下文切换(4次用户态和内核态的切换),4次数据拷贝(两次CPU拷贝以及两次的DMA拷贝)

这种简单又传统的文件传输方式,存在冗余的上文切换和数据拷贝,在高并发系统里是非常糟糕的,多了很多不必要的开销,会严重影响系统性能。

所以,要想提高文件传输的性能,就需要减少「用户态与内核态的上下文切换」和「内存拷贝」的次数。

零拷贝主要是用来解决操作系统在处理 I/O 操作时,频繁复制数据的问题。关于零拷贝主要技术有MMap+Write、SendFile等几种方式。

Mmap+Wirte实现零拷贝:

可以发现,mmap+write实现的零拷贝,I/O发生了4次用户空间与内核空间的上下文切换,以及3次数据拷贝。其中3次数据拷贝中,包括了2次DMA拷贝和1次CPU拷贝。

SendFile实现零拷贝:

  1. 用户进程发起sendfile系统调用,上下文(切换1)从用户态转向内核态
  2. DMA控制器,把数据从硬盘中拷贝到内核缓冲区。
  3. CPU将读缓冲区中数据拷贝到socket缓冲区
  4. DMA控制器,异步把数据从socket缓冲区拷贝到网卡,
  5. 上下文(切换2)从内核态切换回用户态,sendfile调用返回。

可以发现,sendfile实现的零拷贝,I/O发生了2次用户空间与内核空间的上下文切换,以及3次数据拷贝。其中3次数据拷贝中,包括了2次DMA拷贝和1次CPU拷贝。

声明:本站部分内容来自互联网,如有版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▍相关推荐
更多资讯 >>>